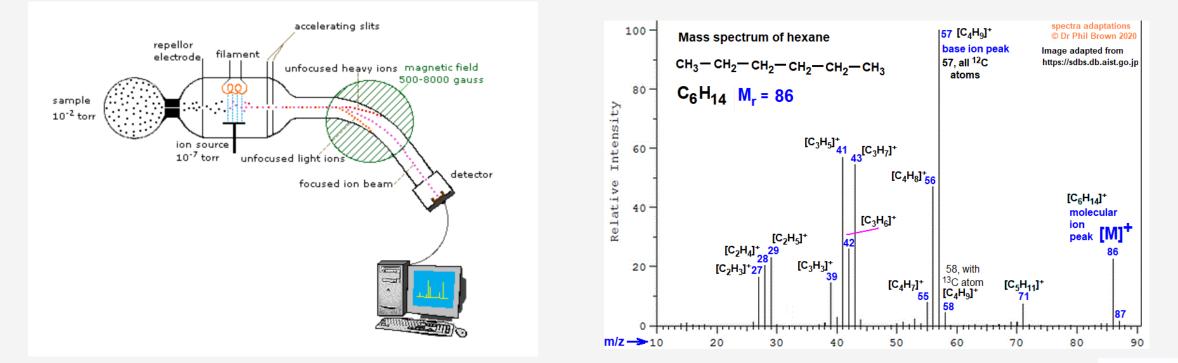


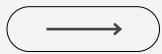
OUPUT 2 AJFVC MATERIALS FOR PESTICIDE RESIDUE ANALYSIS TRAINING HELD IN THE PHILIPPINES FOR **CAMBODIAN PARTICIPANTS IN JANUARY 2025**

- An Introduction to Gas Chromatography Mass Spectrometry
- GC-MS Importance of Preventive Maintenance And Day-To-Day Basic Troubleshooting
- Analytical Quality Control and Method Validation Procedures For Pesticide Residues Analysis In Food and Feed Sante 11312/2021 V2
- Method Validation Parameters and Criteria (Quantitative)
- Proficiency Testing on Pesticide Residue Analysis
- **Estimation of Measurement Uncertainty**
- Pesticides: Principle and Classification
- Guidelines on Good Laboratory Practice in Pesticide Residue Analysis
- Liquid Chromatography/ Mass Spectrometry Fundamentals
- Pesticide Residue Analysis Using Modular QuEChERS BS EN 15662:2018

An Introduction to Gas **Chromatography Mass** Spectrometry

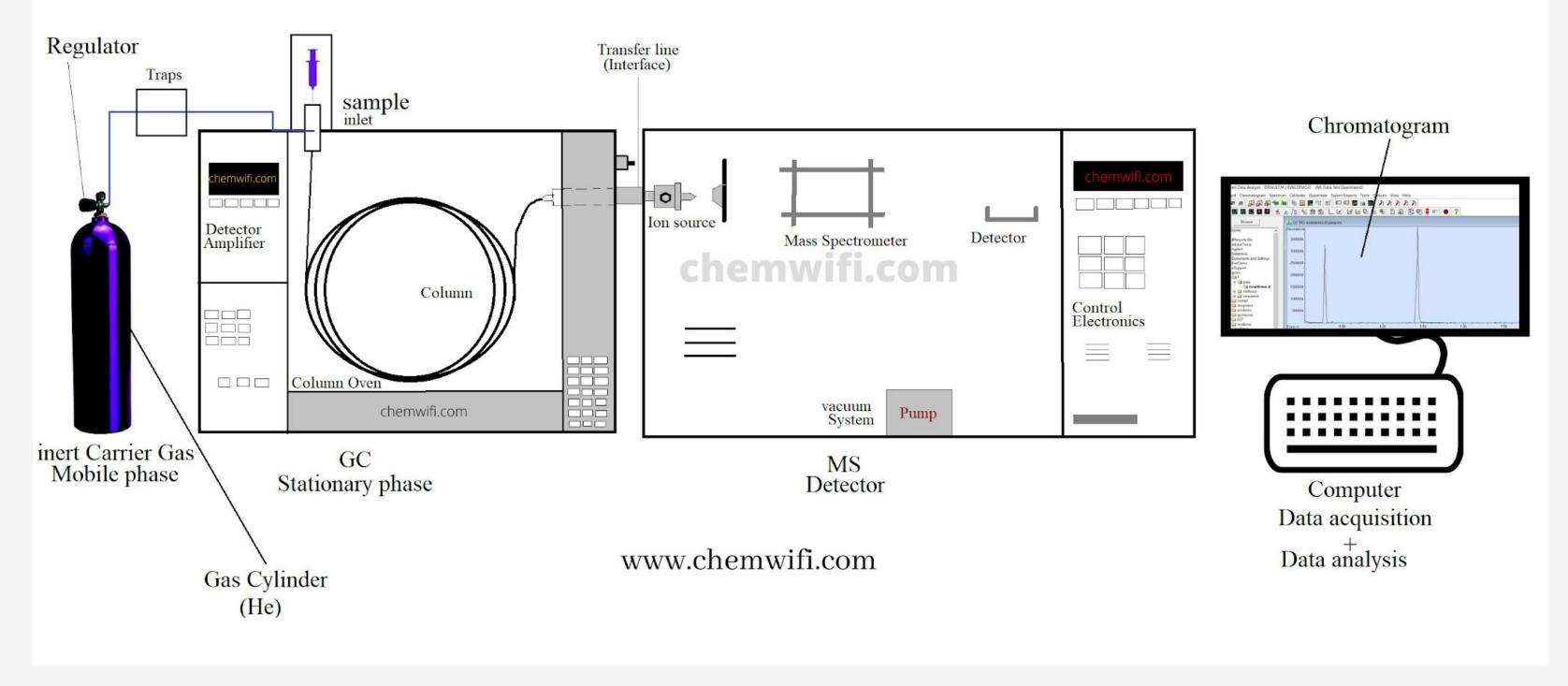
Pesticide Analytical Laboratory Section

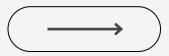

Plant Product Safety Services Division Bureau of Plant Industry Quezon City, metro manila, philippines


ASEAN JICA Food Value Chain Development Project 01/ /2025

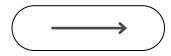
PRESENTED BY JULIO SALVADOR C. VALEZA PESTICIDE RESIDUE UNIT

Gas chromatography/mass spectrometry (GC/MS) combines two analytical tools to identify and measure the concentration of chemicals found in foods, consumer products, pharmaceuticals, fuels, the environment, and more.

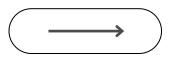


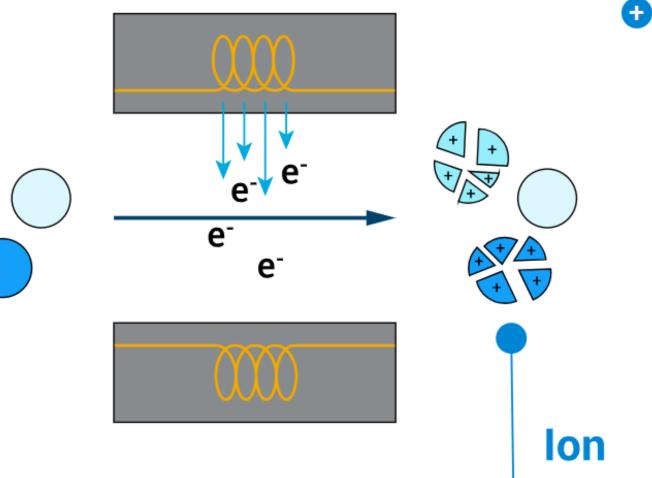

What is Gas Chromatography / Mass Spectrometry?

Applications for Field-Portable GC/MS in Food Safety


Fundamental of GC-MS (Diagram)

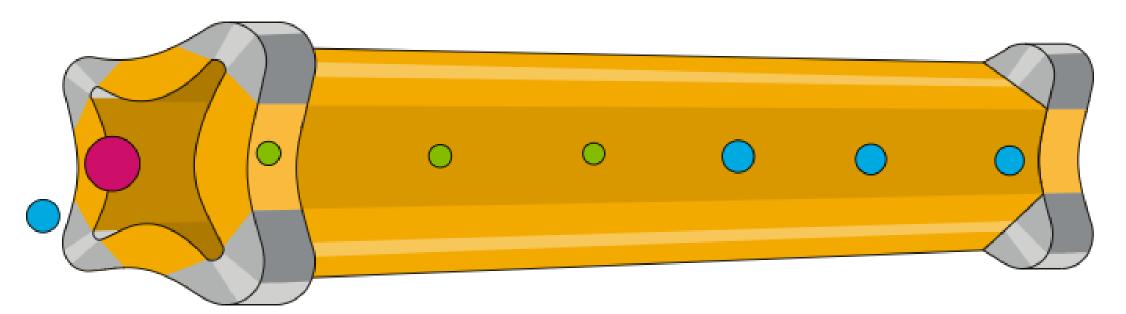
The Gas Chromatograph.

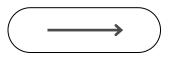

Gas chromatography (GC) is used to separate volatile components in a mixture. It works by heating a liquid sample until it converts into a vapor that can be carried by a gas like helium or hydrogen. The gas (called a carrier gas or mobile phase) transports the sample through a long, thin glass or metal tube (column) that is coated with a chemical (stationary phase).



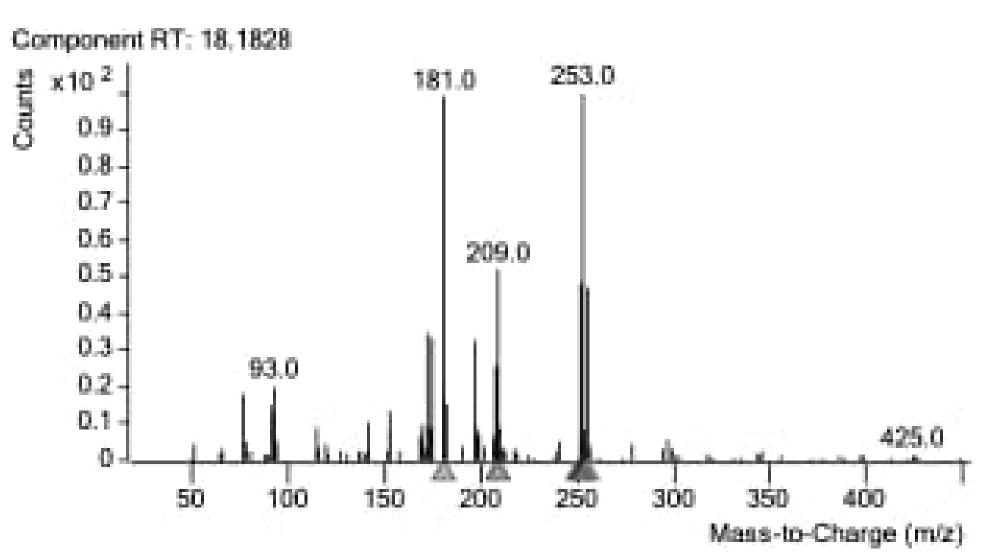
The Mass Spectrometer

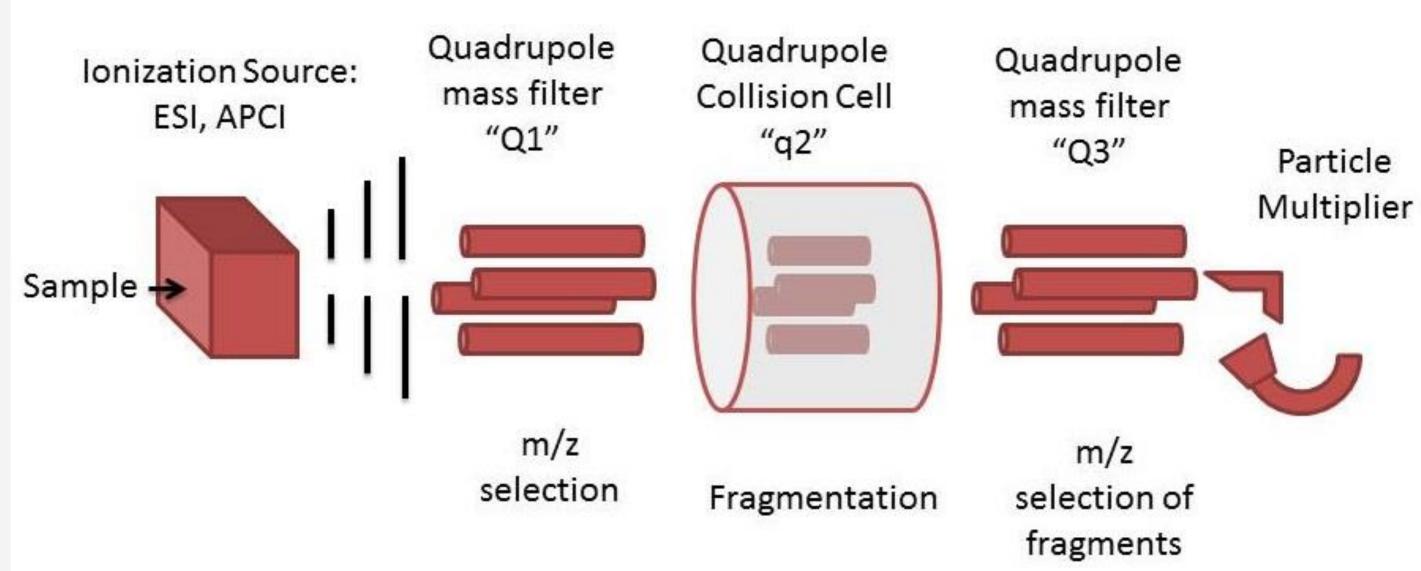
A mass spectrometer (MS) is a detector that identifies and measures the vaporized compounds separated in the GC. While GC provides retention time and peak intensity information, mass spectrometry adds a third dimension: mass information. Mass information can be used to identity, quantify, and determine the structural and chemical properties of molecules.


The first component the chemicals encounter in the mass spectrometer is called the **ion source**, where neutral molecules that elute from the GC column are ionized. A common ion source is an electron ionization (EI) source that usually contains a metal filament, similar to the filament in a light bulb. When an electrical charge is applied to the filament, it emits a stream of electrons at the incoming compounds, breaking them into fragments, and many of them with a positive charge. The pattern of resulting fragments acts as a highly specific "fingerprint" that can be used to identify the chemical.



The Mass Spectrometer


Within the ion source, a series of electrodes known as lenses direct the charged molecules away from the source and into a **quadrupole** mass analyzer (or mass filter). A quadrupole consists of four rods to which a direct current voltage and radio frequency are applied. Various combinations of these forces ensure that only fragments of a specific mass (called a mass-to-charge ratio or m/z) will travel down the electric field of the quadrupole toward the detector at a given time.


The Mass Spectrometer

The mass spectrometer rapidly cycles through different voltages, measuring many m/z ratios. The ions that pass through the instrument are measured by a **detector** called an electron multiplier, which provides a signal intensity for each ion species present. The recorded data at each point in time of an experiment is called a mass spectrum. The pattern of this mass spectrum can be used for identification purposes, much like a fingerprint. The response recorded for the different ion species can be calibrated for quantitative purposes.

ASEAN JICA Food Value Chain Development Project

7

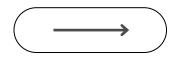
A MS/MS system, consists of two mass analyzers connected in series with a collision or fragmentation cell in between. Ions are separated in the first mass analyzer (MS1), enter the collision cell and undergo fragmentation, resulting in generation of ions called product ions which are separated in the second mass analyzer (MS2) and detected.

Definitions concerning instruments, mass and m/z and ions

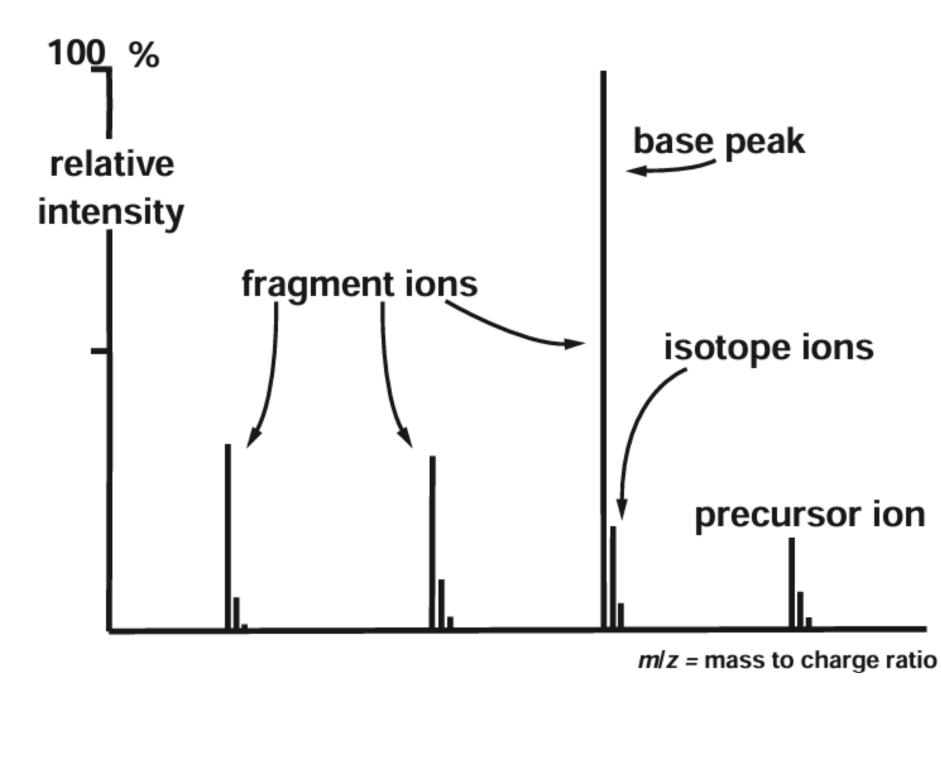
What are ions? Ions are atoms, molecules or fragments of molecules that carry one or more positive or negative electrical charges.

What is mass to charge (m/z) ratio? of an ion is the number obtained by dividing the mass of the ion (m) by the number of electrical charges (z) acquired by the sample during the ionization process. The m/z of an ion is dimensionless number:- m and z are always written in italics. What is *m* in *m*/*z*? The scales of atomic masses are based upon an agreed standard by IUPAC. Today carbon 12C is taken to have an atomic mass of 12.00000000 Da.

The atomics masses of the other elements and their isotopes are measured relative to this.

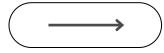

- 12C = 12.00000000
- 1H = 1.007825035
- 14N =14.003074002
- 160 =15.99491463

January, 2025


Definitions concerning instruments, mass and m/z and ions

What is z in m/z? The electrical charge (positive of negative) present on an ion is represented by z. In most cases there is only one charge on an ion; thus, the measured m/z value is equivalent to the mass of the ion (z=1)

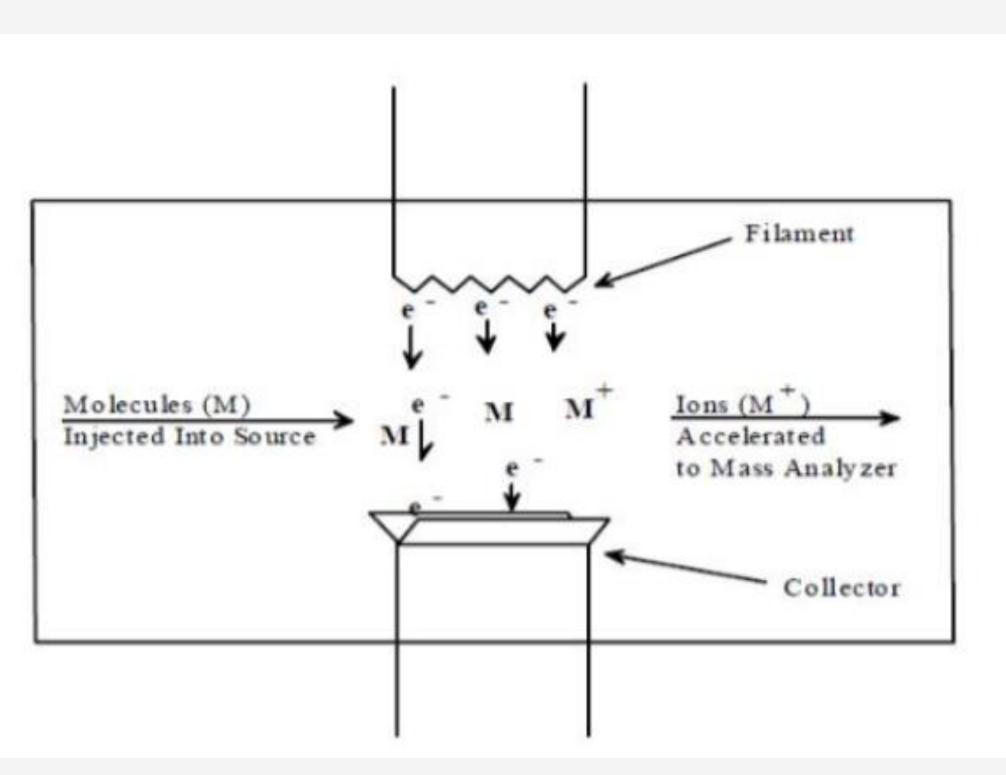
What is ionic mass? The ionic mass of an ion takes into account the mass of an electron (0.000548Da = 0.548 mDa) that is removed or added during the formation of the ion.



What is a mass spectrum?

- Na]+.

- mlz 13 (13C).


• Energy is added to molecules during ionization. The distribution of the energy may result in the breaking of chemical bonds and, consequently, in fragment ion formation. The fragmentation may be so extensive that no precursor ion is observed. • The form of the molecular/precursor ion depends on the mode of ionization and can include for EI [M]+. and CI [M+H]+. [M+NH4]+., for ESI [M]+, [M + H]+ and other adduct ions, e.g., [M +

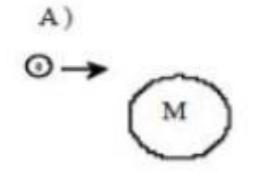
• The **base peak** represents the most stable ion resulting from the ionization process and is, therefore, the most intense (abundant) peak in the spectrum. The intensities of all other ions are usually normalized with respect to the base peak. • Ions, normally of lesser intensity and to the right of each precursor/fragment ion, generally represent isotopic species. Typically, but not always, isotope ions reflect the presence of carbon-

	Ionization Method	Typical Analytes	Sample Introduction	Mass Range	Method Highlights
Types of Ionization	Chemical ionization (CI)	Relatively small, volatile	GC or liquid/solid probe	Up to 1000 Daltons	Soft method, molecular ion peak [M+H] ⁺
	Electron Impact Ionization (EI)	Relatively small, volatile	GC or liquid/solid probe	Up to 1000 Daltons	Hard method, versatile, provides structure info
	Elecrtospray Ionization (ESI)	Peptides, proteins, nonvolatile	Liquid chromatography	Up to 20000 Daltons	Soft method, ions often multiply charge
	Fast Atom Bombardment (FAB)	Carbohydrates, organometallics, peptides, nonvolatile	Sample mix in viscous liquid	Up to 6000 Daltons	Harder than ESI or MALDI
	Matrix Assisted Laser Desorption Ionization (MALDI)	Peptides, proteins, nucleotides	Sample mix in solid matrix	Up to 500 Daltons	Soft method, very high mass

12

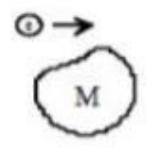
Electron Impact (EI)

compound. library.


1.EI is the most widely used ionization mode in GC/MS analysis. Almost all commercial GCMS instruments equip this mode as standard ionization. 2.EI causes much fragmentation of a molecule whose spectral pattern is useful for identifying sample

3.Library search is available. EI mass spectra obtained by 70eV electron bombardment can be used for identification by comparing with spectra registered in the mass spectral

4.An open type of ion source is used. Vacuum pressure inside the source, mainly determined by carrier gas, is about less than 10-2 Pa.


13

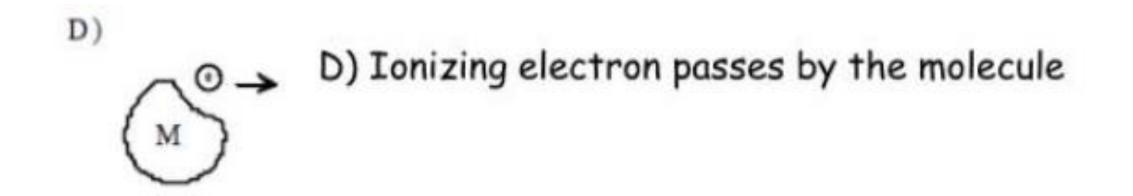
Electron Ionization Process

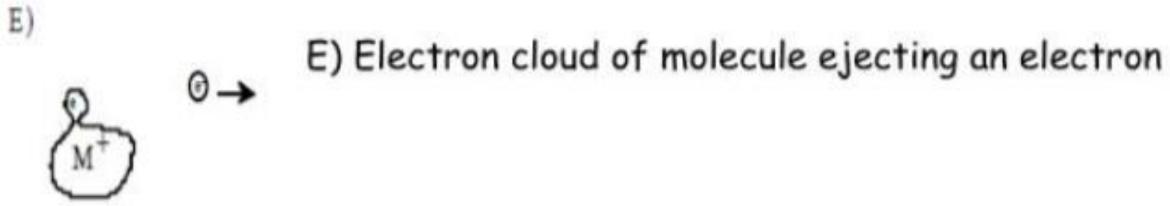
A) Ionizing electron approaches the electron cloud of a molecule


B)

B)Electron cloud distorted by ionizing electron

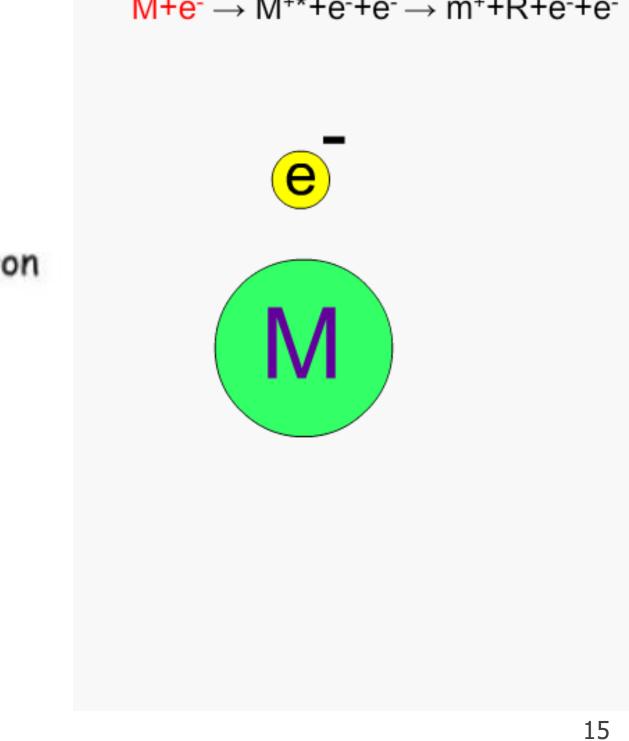
C) C) Electron cloud further distorted by ionizing electron М

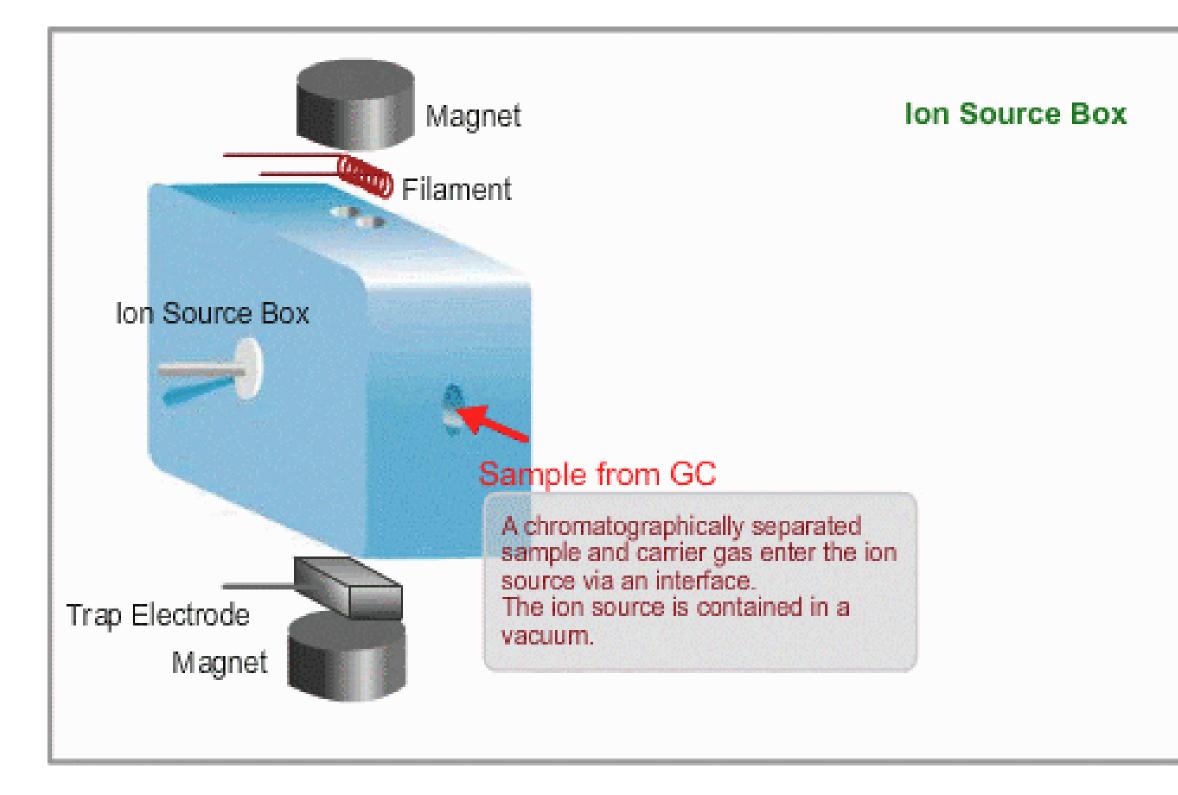

 $M+e^- \rightarrow M^++e^-+e^-$



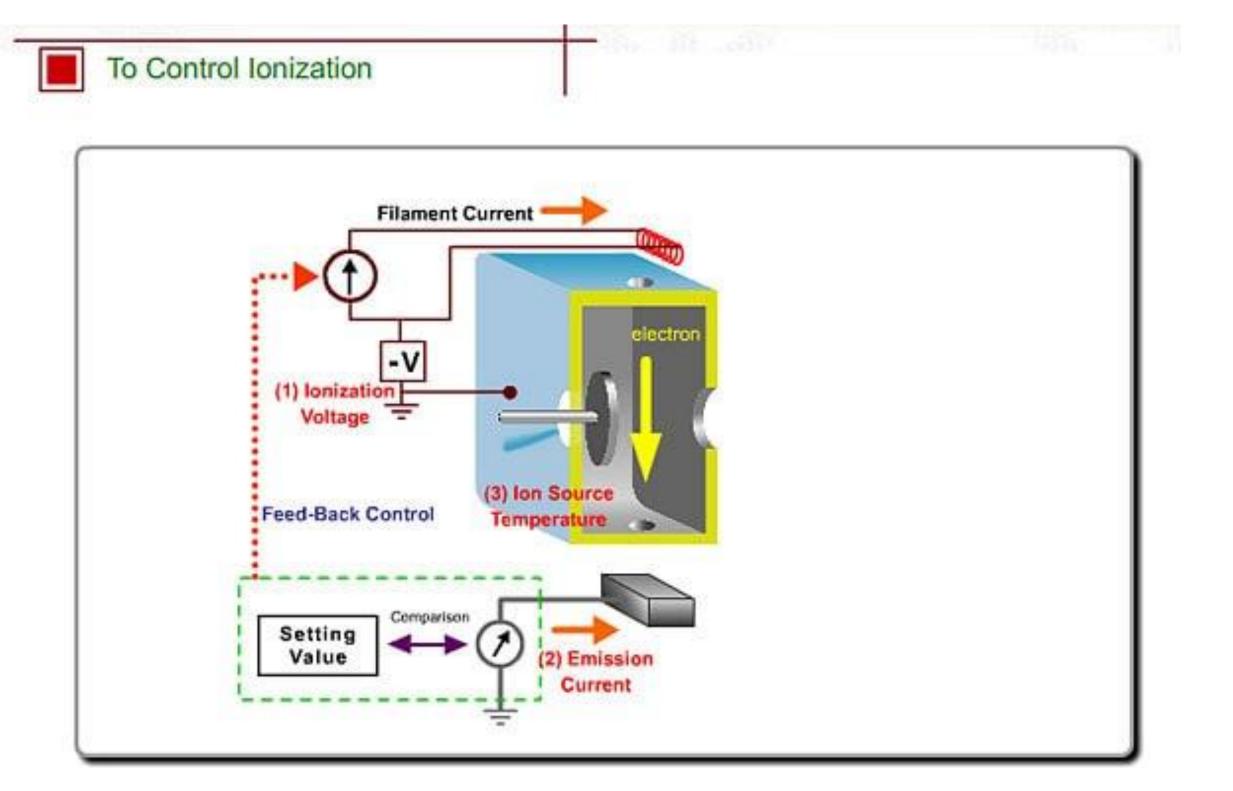
ASEAN JICA Food Value Chain Development Project

14

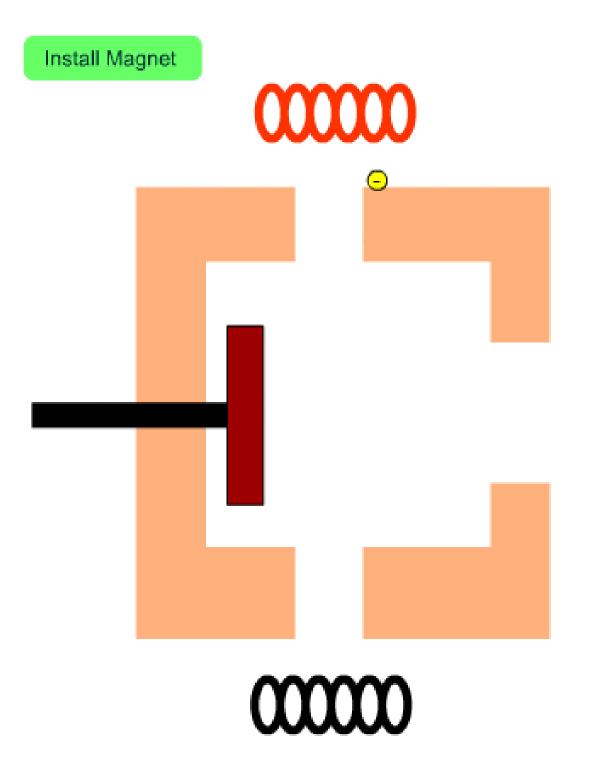

Electron Ionization Process


F) (\cdot)

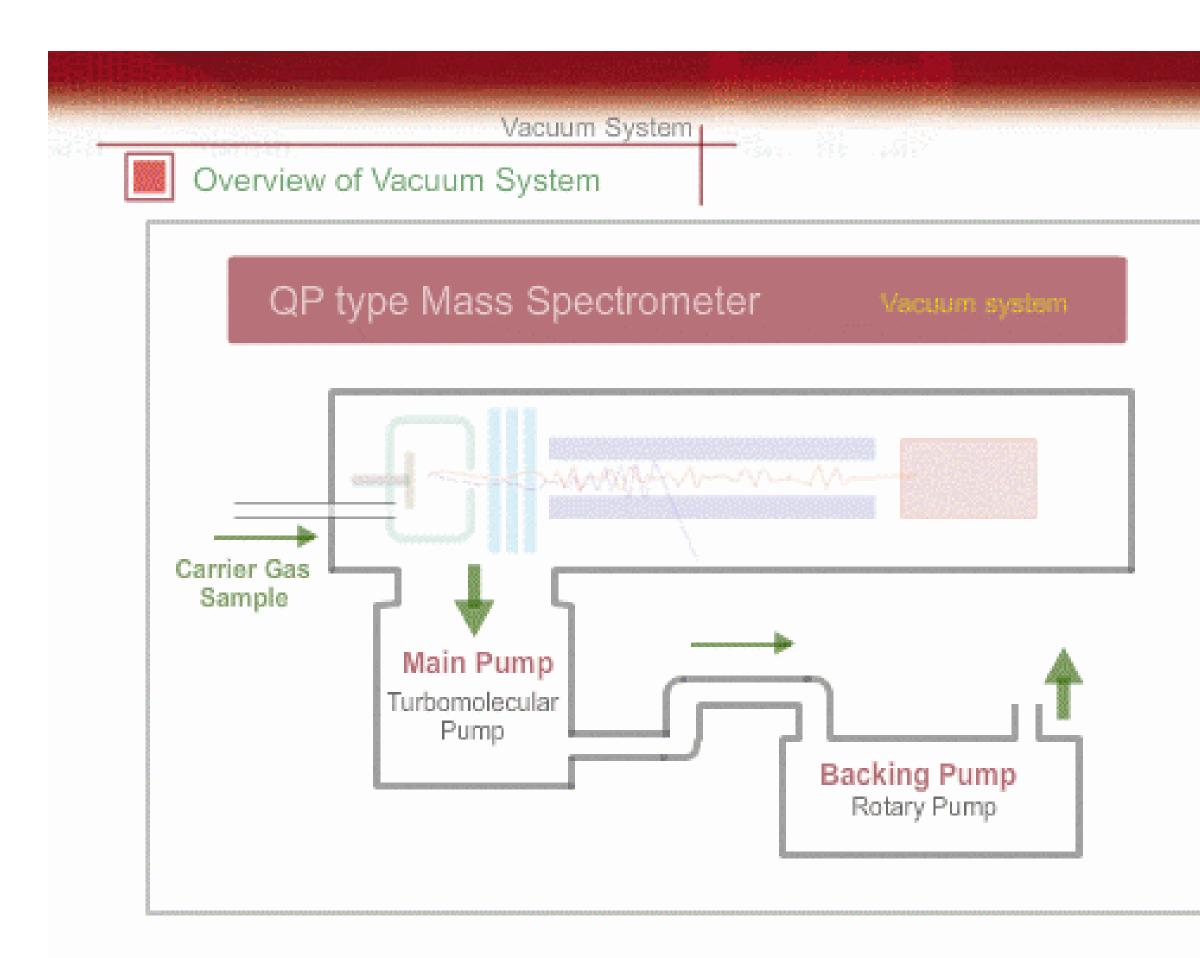
F) Molecular ion and ejected electron.

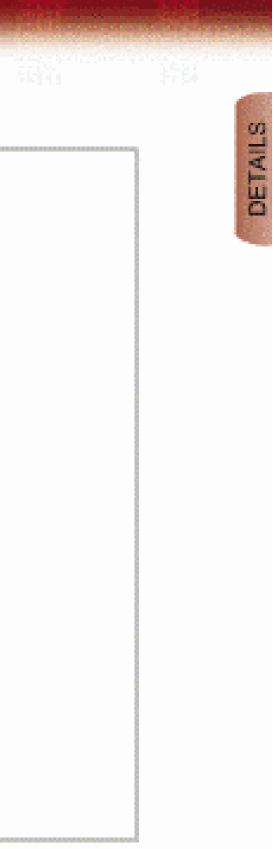

 $M+e^- \rightarrow M^{+*}+e^-+e^- \rightarrow m^++R+e^-+e^-$

The Ion Source



How to Control Ionization

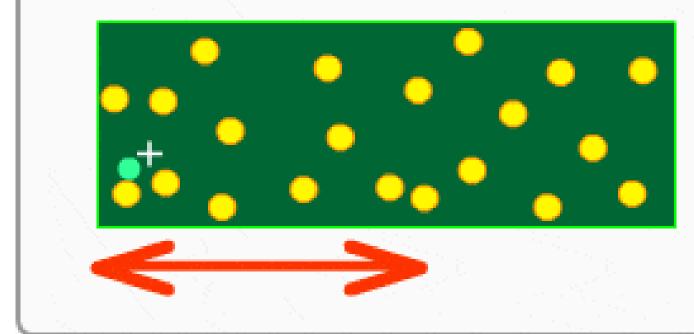

The Role of Magnet



January, 2025

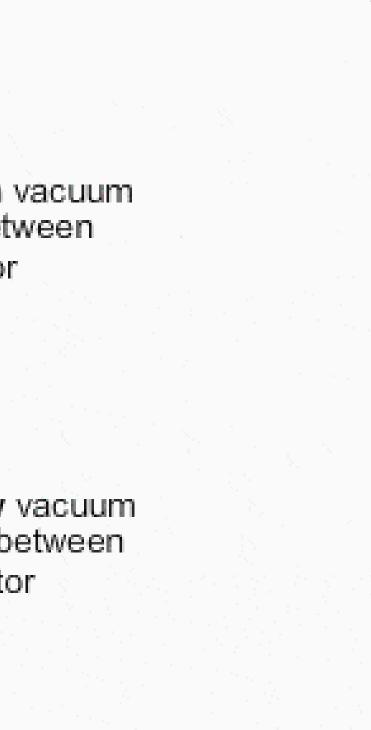
ASEAN JICA Food Value Chain Development Project

18


The Vacuum System

Ion Source

Detector


High Vacuum

The mean free path for a **high** vacuum is **longer** than the distance between the ion source and the detector

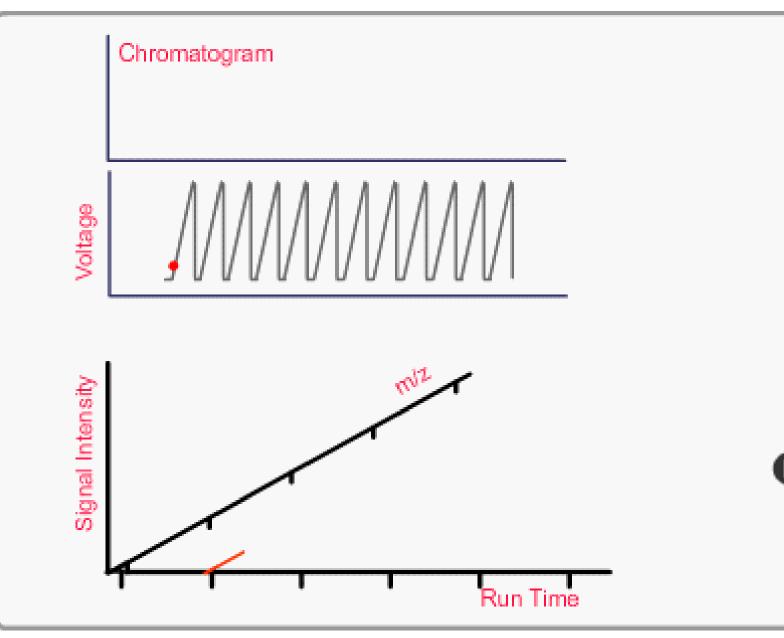
Low Vacuum

The mean free path for a **low** vacuum is **shorter** than the distance between the ion source and the detector

Why in Vacuum System?

SCAN vs SIM Mode

SCAN MODE

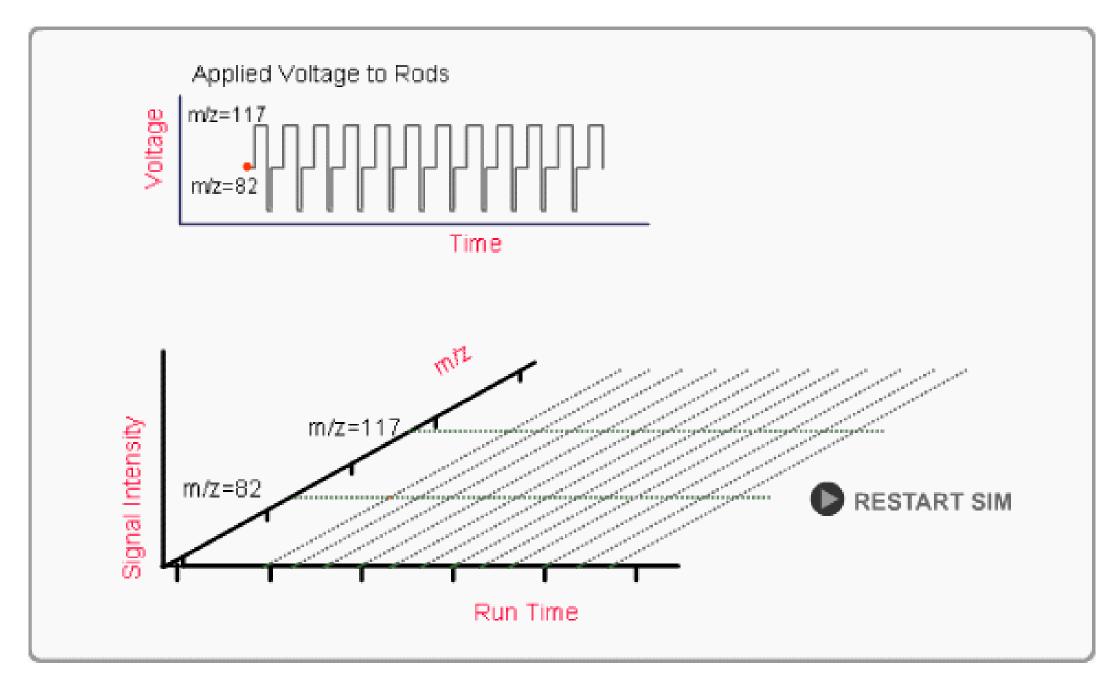

Used for the identification of chemical components using a mass spectrum, quantitative analysis and determination of some parameters for SIM analysis

SIM MODE

Lower detection limits can be obtained with SIM mode than the scan mode in quantitative analysis because of the sensitivity is 10 to 100 times better

SCAN Mode

Mass spectral data are acquired in sequence at specified intervals, for example 0.5 sec, by changing the voltage applied to rods. All of the measured spectra are stored in a computer to be processed.



22

SIM Mode

In SIM mode, the mass spectrometer is set to measure only the specified mass, the sensitivity of SIM is tens to hundreds times higher than a SCAN.

GC-MS IMPORTANCE OF PREVENTIVE MAINTENANCE AND DAY-TO-DAY BASIC TROUBLESHOOTING

Pesticide Analytical Laboratory Section

Plant Product Safety Services Division Bureau of Plant Industry Quezon City, metro manila, philippines

ASEAN JICA Food Value Chain Development Project 01/2025

> I. GAZA PESTICIDE RESIDUE UNIT

Today's Discussion Outline of Topics

- 01 Why is routine maintenance of your GC essential?
- 02 Establishing a maintenance schedule
- 03 Troubleshooting common day-to-day problems
- 04 Tune report

January, 2025

WHY IS ROUTINE MAINTENANCE OF YOUR GCESSENTIAL?

Spinst Longer

Distant in

-

WHY IS ROUTINE MAINTENANCE OF YOUR GC ESSENTIAL?

ENSURES ACCURACY AND RELIABILITY OF RESULTS

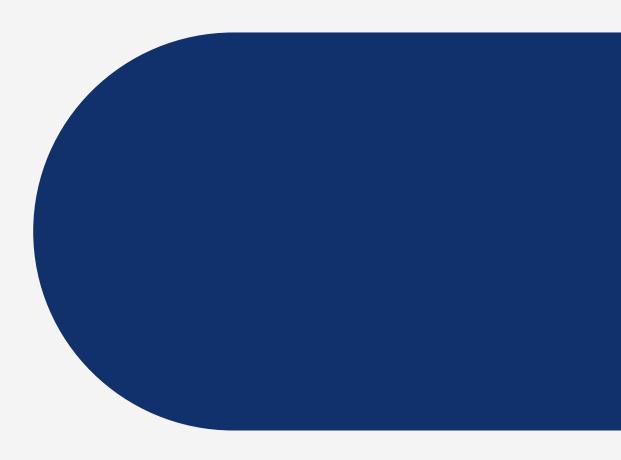
January, 2025

ENSURES ACCURACY AND RELIABILITY OF RESULTS

EXTENDS INTRUMENT LIFESPAN

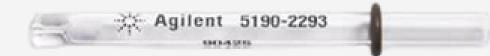
January, 2025

ENSURES ACCURACY AND RELIABILITY OF RESULTS


EXTENDS INTRUMENT LIFESPAN

MINIMIZES INTRUMENT DOWNTIME

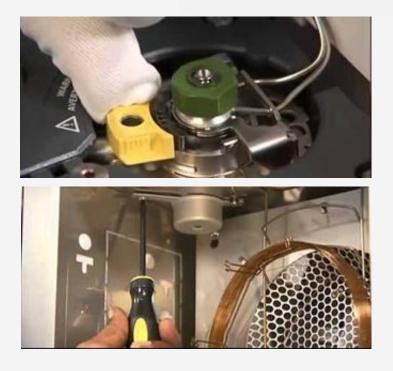
January, 2025



ENSURES SENSITIVITY AND PRECISION

January, 2025

ENSURES SENSITIVITY AND PRECISION


SUPPORTS REGULATORY COMPLIANCE

January, 2025

ENSURES SENSITIVITY AND PRECISION

Investing time in routine maintenance enhances system efficiency, reliability, and accuracy, making it an indispensable part of gas chromatography operations.

SUPPORTS REGULATORY COMPLIANCE

January, 2025

ESTABLISH A MAINTENANCE SCHEDULE

• A scheduled maintenance plan acts as a reminder to check and service the GC regularly, ensuring nothing is overlooked.

 It also helps with planning your workflow

January, 2025

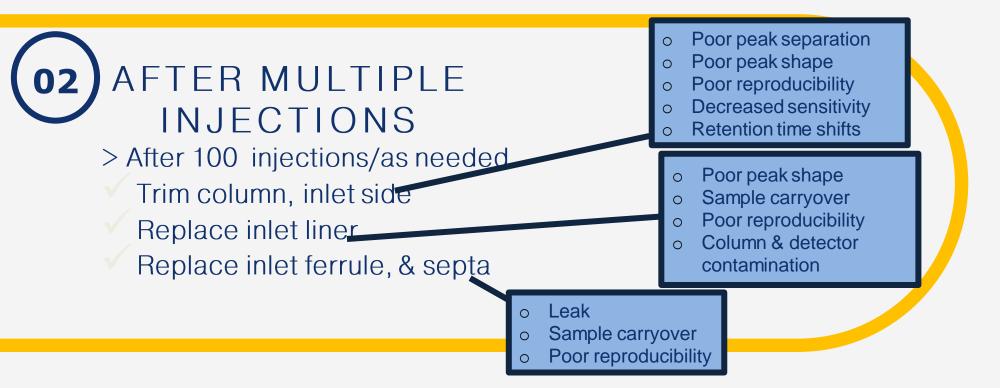
BEFORE USE 01

✓ Check logbook for previous log

Check gas tank supply, pressure, & flow
 Check baseline

- ✓ Tune instrument
- ✓ Trial run your LOQ, check if GC needs cleaning

• Retention time shifts


- Unstable baseline \bigcirc
- o Inlet pressure shutdown
- Column damage

BEFORE USE

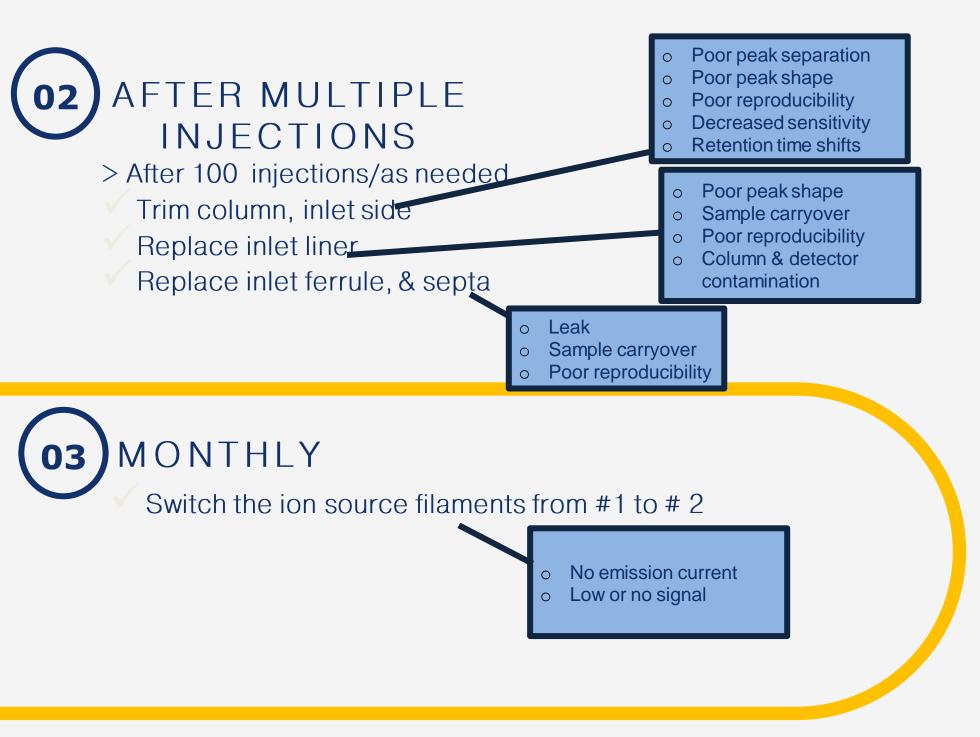
Check logbook for previous log

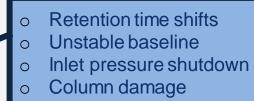
Check gas tank supply, pressure, & flow

- Check baseline
- Tune instrument
- Trial run your LOQ, check if GC needs cleaning

o Retention time shiftso Unstable baseline

o Column damage


o Inlet pressure shutdown


BEFORE USE

Check logbook for previous log

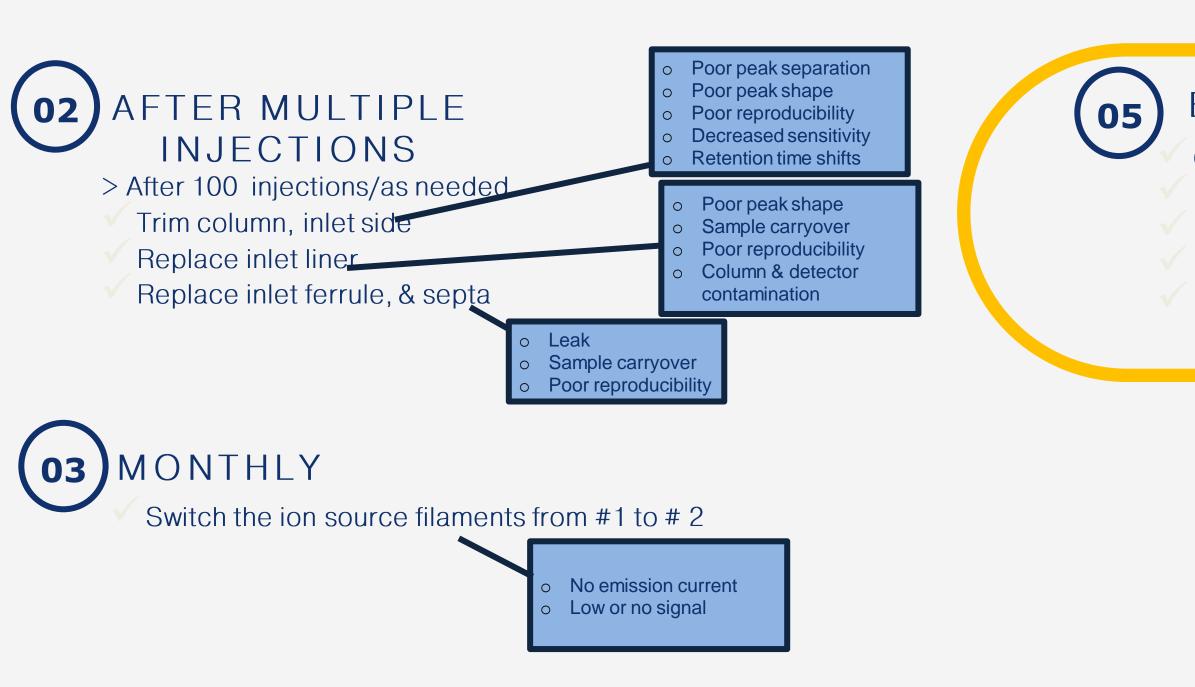

Check gas tank supply, pressure, & flow

- Check baseline
- Tune instrument
- Trial run your LOQ, check if GC needs cleaning

January, 2025

January, 2025

EVERY 3 MONTHS

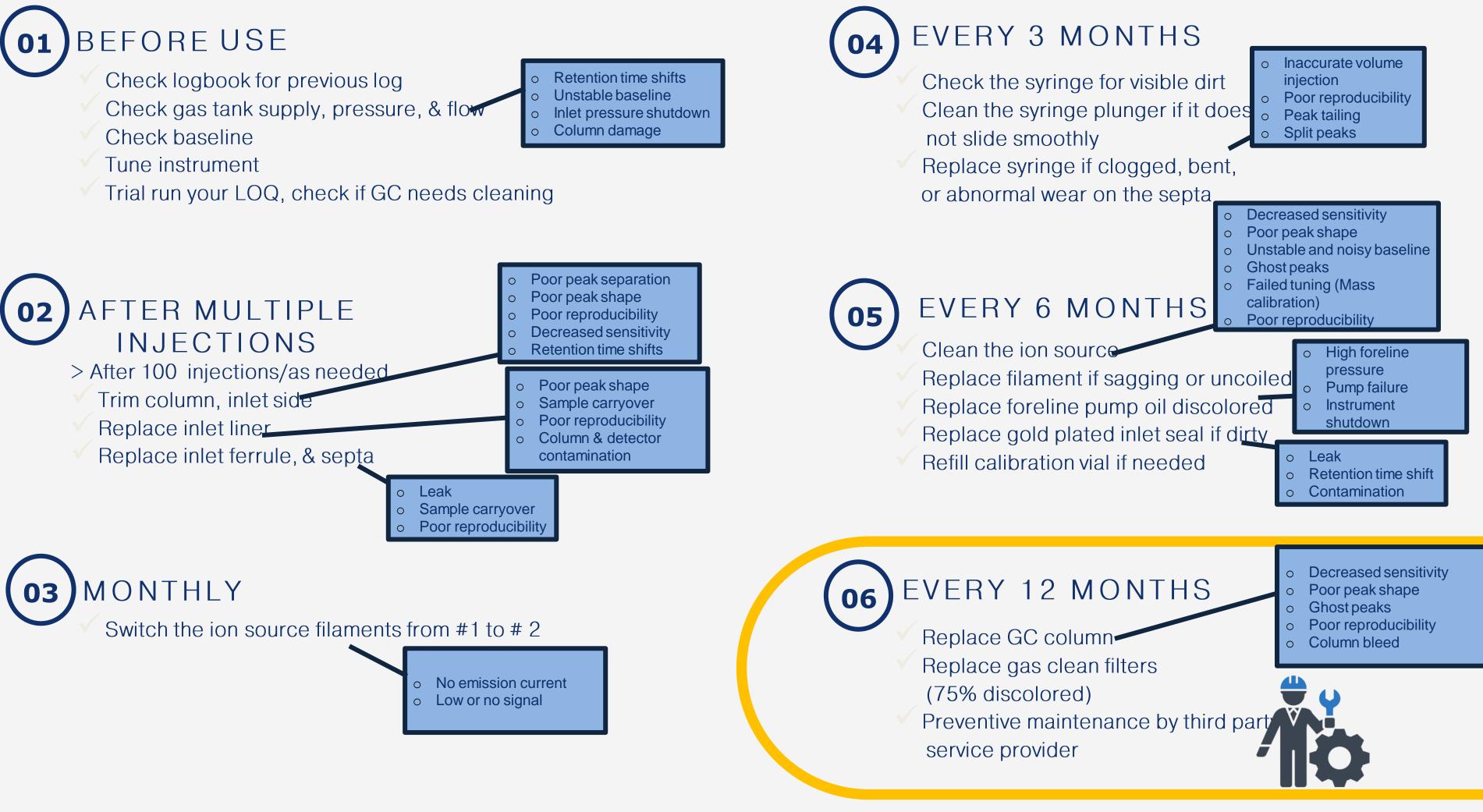

Check the syringe for visible dirt Clean the syringe plunger if it does not slide smoothly

- Replace syringe if clogged, bent,
- or abnormal wear on the septa

- Inaccurate volume injection
- o Poor reproducibility
- o Peak tailing
- o Split peaks

O1 BEFOREUSE Check logbook for previous log

- Check gas tank supply, pressure, & flow
- Check baseline
- Tune instrument
- Trial run your LOQ, check if GC needs cleaning


04

Inlet pressure shutdown

Column damage

0

0

January, 2025

BEFORE USE

Check logbook for previous log

- Check gas tank supply, pressure, & flow
- Check baseline
- Tune instrument
- Trial run your LOQ, check if GC needs cleaning

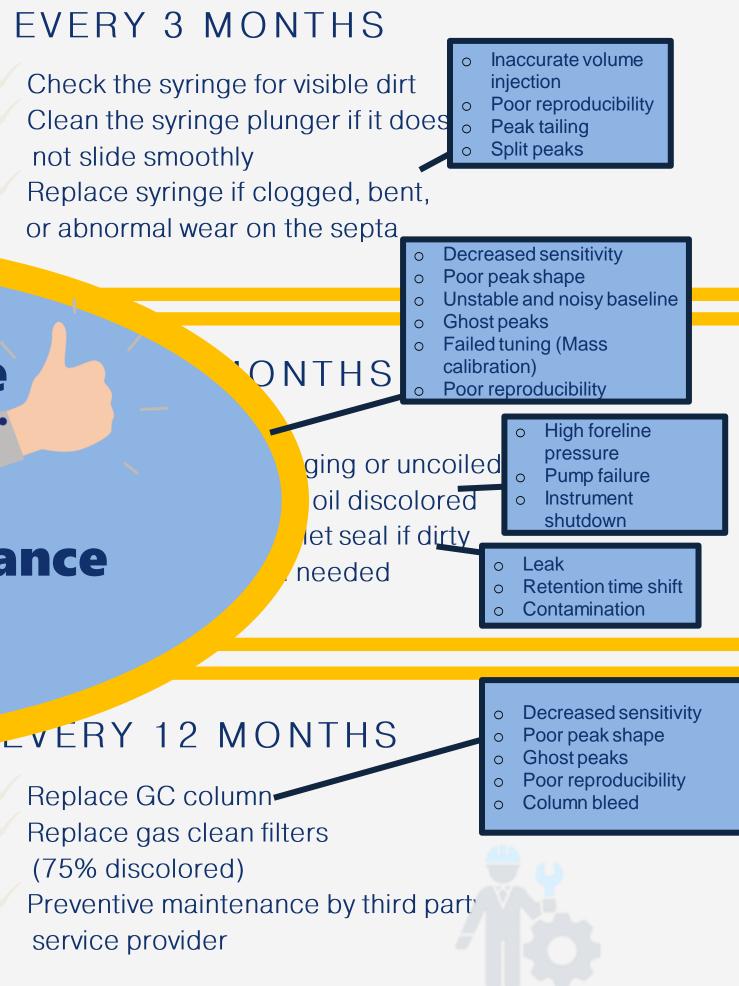
- o Retention time shifts
- o Unstable baseline
- o Inlet pressure shutdown
- o Column damage

AFTER MULTIPLE INJECTIONS

> After 100 injections/as nec
 Trim column, inlet side
 Replace inlet liner
 Replace inlet ferrule, & set

Planned maintenance downtime

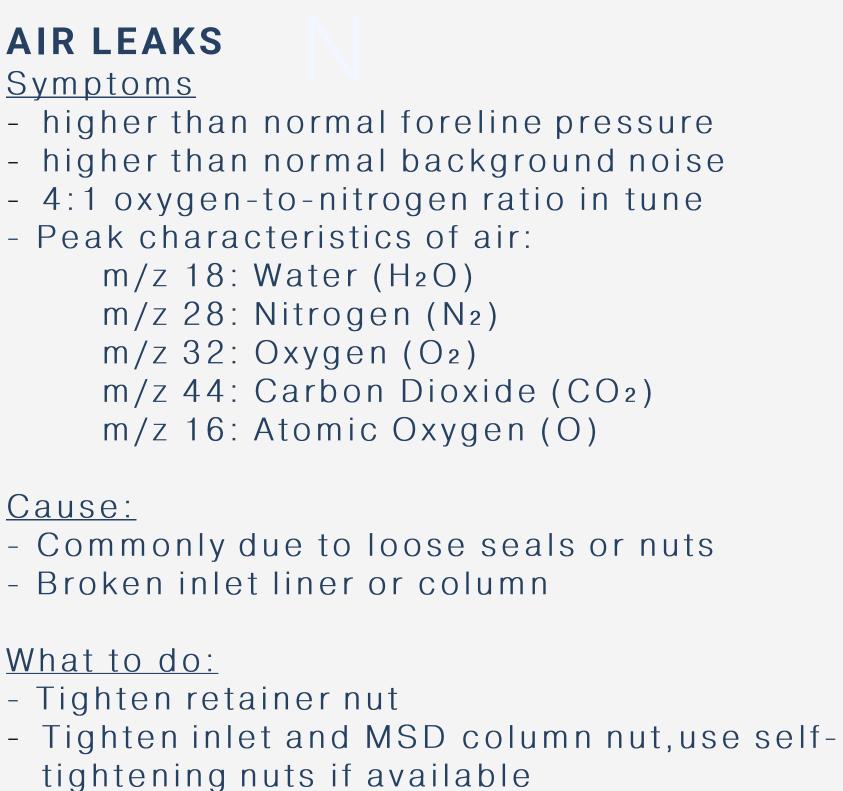
04


Unexpected maintenance downtime

MONTHLY

Switch the ion source filaments from #1 to # 2

No emission current
 Low or no signal


January, 2025

• KEEP RECORDS AND LOG ALL ACTIVITIES

DATE	ACTIVITY/MAINTENANCE	# OF INJECTIONS	REMARKS	ANALYST
December 10,2024	 Lower GC heated areas to ambient temperature. Turn off inlet pressure Replace inlet septa, inlet liner Trim GC column, inlet side ~ 6in Replace inlet ferrule, reconnect column Purge system, (Purge flow to 200ml/min for 10 mins.) Reload MR1_2025.m & stabilize instrument Retighten column nut and retainer nut Tune instrument 		Gas saver: OFF Status OK, ready for injection	I. Gaza
December 11,2024	 Load MR1_2025.m Quick tune instrument Check retainer nut, retighten Re-stabilize instrument, 20 minutes Quick tune instrument Inject samples MPR-24-2710 to 2730, Market monitoring samples 	4 6	 Nitrogen at 44%, Oxygen at 11%, possible leak Status OK, ready for injection 	I. Gaza M.Alava
December 13,2024	- Retrieve MPR-24-2710 to 2730		r ² = 0.998 MDL = 0.005ppm	M. Alava

COMMO

- Check inlet liner, septum and ferrule
- Check GC column, check for small cracks
- Purge system at 200ml/min for 10 mins.

January, 2025

AY-TO-DAY PROBLEMS

COMMO

AIR LEAKS

<u>Symptoms</u>

- higher than normal foreline pressure
- higher than normal background noise
- 4:1 oxygen-to-nitrogen ratio in tune
- Peak characteristics of air:
 - m/z 18: Water (H₂O)
 - m/z 28: Nitrogen (N₂)
 - m/z 32: Oxygen (O₂)
 - m/z 44: Carbon Dioxide (CO₂)
 - m/z 16: Atomic Oxygen (O)

Cause:

- Commonly due to loose seals or nuts
- Broken inlet liner or column

What to do:

- Tighten retainer nut
- Tighten inlet and MSD column nut, use selftightening nuts if available
- Check inlet liner, septum and ferrule
- Check GC column, check for small cracks
- Purge system at 200ml/min for 10 mins.

- etc. <u>Symptoms</u> - Peak splitting

Cause:

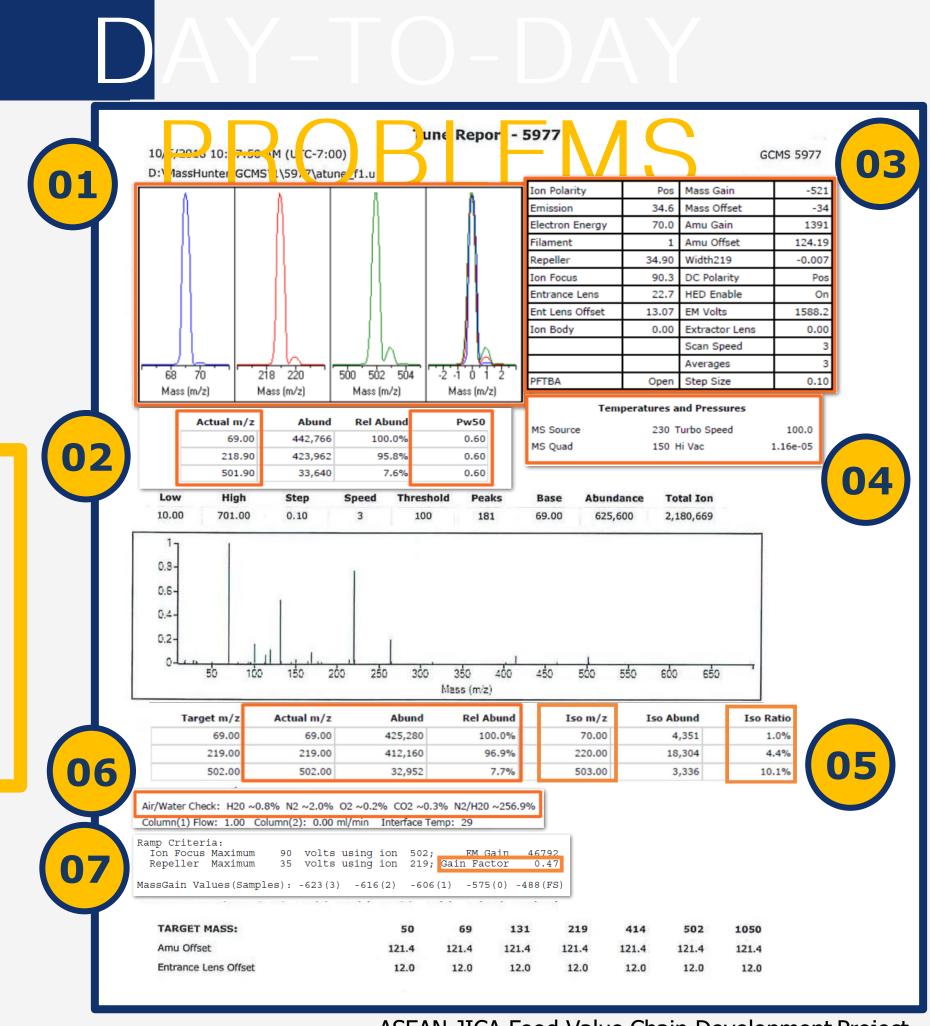
- What to do:
- Check syringe

POCRPEAKSYMMETRY, CHOST PEAKS

- Peak broadening - Peak fronting/tailing - Ghost peaks - Inconsistent response - Decrease in sensitivity - Sample carryover

- RT shift

- Poor repeatability
- No peak


- Contaminant build up in the front end of column, Inlet contamination, dirty Gold seal, dirty syringe, worn out septa/ferrule

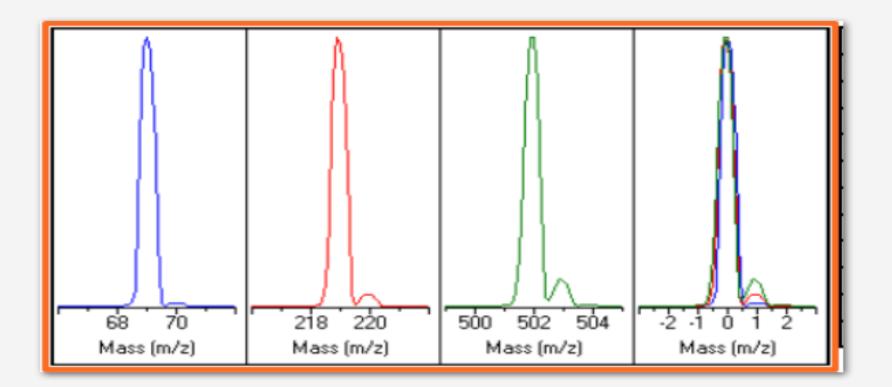
Check method - Trim column at inlet side, replace inlet liner, ferrule, and septum Bakeout column Bakeout MSD ASEAN JICA Food Value Chain Development Project

COMMO

OUT OF BOUND 3 TUNE

- May be due to air leaks
- MS needs more time to stabilize
- Calibrant level is low
- Dirty ion source
- EM horn needs replacing
- Pump oil needs replacing
- 1. Mass peak profiles of PFTBA perfluorotributylamine (m/z 69, 219 and 502)
- 2. Actual m/z and PW50 of (m/z 69, 219 and 502)
- **3. MS parameter**
- 4. Temperatures and pressures during the tune
- **5. Spectrum scan result**
- 6. Air/water checklist
- 7. Autotune report gain factor

1. Mass peak profiles of PFTBA


- Shows you the signal for the three main ions from PFTBA that the instrument tunes on.

The mass peak profiles should be <u>smooth</u>, <u>symmetrical and even in width</u>, the mass peak profiles should <u>not have visible noise</u>, splits, or precursors visible.

2. Actual m/z and PW50 of (m/z 69, 219 and 502)

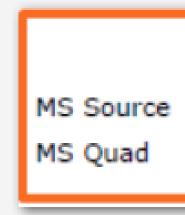
- This section presents the measured mass-tocharge ratios (m/z) and the peak widths at half maximum (PW50) for the tuning ions.

Actual m/z should be within <u>+/- 0.2 m/z</u> of the actual mass at m/z 69.0, 219.0, and 502.0.
 The PW50 of all masses should be <u>0.60 +/- 0.05</u> m/z if the target width is set to 0.60.

Actı

tual m/z	Abund	Rel Abund	Pw50	
69.00	442,766	100.0%	0.60	
218.90	423,962	95.8%	0.60	
501.90	33,640	7.6%	0.60	

3. MS parameter


- Tells you which settings the instrument is using to obtain the data presented.

A clean ion source with a new EM horn typically has a gain voltage of <u>1400–1600 V</u>. Clean ion source or replace EM horn if EM volts is repeatedly at 2800-3000V

4. Temperature and pressure

- The temperatures and pressures actual values of the Mass Spectrometer during the tune

Ion Polarity
Emission
Electron Ene
Filament
Repeller
Ion Focus
Entrance Le
Ent Lens Off
Ion Body
PFTBA

,	Pos	Mass Gain	-521
	34.6	Mass Offset	-34
ergy	70.0	Amu Gain	1391
	1	Amu Offset	124.19
	34.90	Width219	-0.007
	90.3	DC Polarity	Pos
ens	22.7	HED Enable	On
fset	13.07	EM Volts	1588.2
	0.00	Extractor Lens	0.00
		Scan Speed	3
		Averages	3
	Open	Step Size	0.10

Temperatures and Pressures				
230 Turbo Speed	100.0			
150 Hi Vac	1.16e-05			

5. Mass spectrum result

- displays the spectrum scan data

Measured Mass Assignment (Actual m/z) should be within $\frac{+/-0.1}{-0.1}$ m/z of 69.0, 219.0, and 502.0.

 Target m/z
 Actual m/z

 / Z
 69.00
 69.00
 4

 219.00
 219.00
 219.00
 4

 502.00
 502.00
 502.00
 502.00

Relative Mass Abundance (Rel Abund) should be <u>>40% for m/z 219 and >2% for m/z</u> <u>502.</u>

✓ Isotope Measured Mass (Iso m/z) should be within +/-0.1 m/z of 70.0, 220.0, and 503.0.

 $\sqrt{ | sotope Abundance (| so Abund) | should all be > 1000 counts. }$

✓ Isotope Ratio (Iso Ratio) should be close to the theoretical values (m/z 70 at 1.08%, m/z 220 at 4.32% and m/z 503 at 10.09%).

Abund	Rel Abund	Iso m/z	Iso Abund	Iso Ratio
425,280	100.0%	70.00	4,351	1.0%
412,160	96.9%	220.00	18,304	4.4%
32,952	7.7%	503.00	3,336	10.1%

6. Air/water checklist

- displays the spectrum scan data

✓H2O: < 20%, N2: < 5%, O2: < 1.5% for systems under vacuum and at default operating temperature for at least 2hrs. For >24 hrs, water <5%.</p>

	Target m/z	Actual m/z	Abund	Rel Abund	Iso m/z	Iso Abund	Iso Ratio
	69.00	69.00	425,280	100.0%	70.00	4,351	1.0%
lt	219.00	219.00	412,160	96.9%	220.00	18,304	4.4%
	502.00	502.00	32,952	7.7%	503.00	3,336	10.1%

7. Gain factor result of current autotune

- displays the gain factor of current tune, gain factor is the calculation of the current sensitivity of the system.
- Typically a clean ion source and new Filaments has a gain factor of 0.3 to 0,5.

Ramp Criteria: Ion Focus Maximum Repeller Maximum

MassGain Values(Samples)

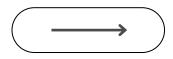
Clean ion source if gain factor reaches 2 to 3 times of the present gain factor.

90	volts	using ion	502;	F	EM Gain	46792
35	volts	using ion	219;	Gain	Factor	0.47
3):	-623(3)	-616(2)	-606	(1) -	-575(0)	-488(FS)

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021 v2

Pesticide Analytical Laboratory Section

Plant Product Safety Services Division Bureau of Plant Industry Quezon City, metro manila, philippines


ASEAN JICA Food Value Chain Development Project 01/ /2025

> PRESENTED BY JULIO SALVADOR C. VALEZA PESTICIDE RESIDUE UNIT

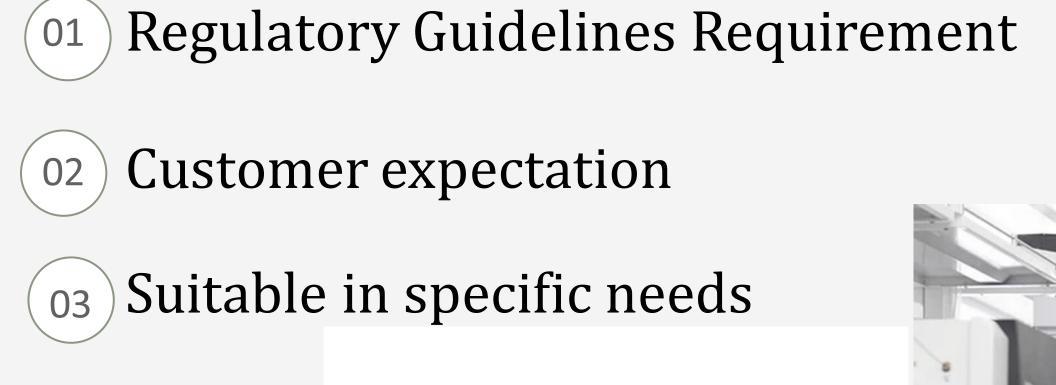
METHOD VALIDATION

"A process that is used to demonstrate the suitability of an analytical method for an intended purpose"

"Documented program which provides a high degree of assurance that an analytical method will consistently determine the presence, absence or quality of one or more attributes with predetermined acceptance criteria"

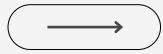
ASEAN JICA Food Value Chain Development Project

2

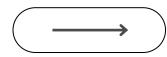


January, 2025

ordinating body conde a tast itom to a


- A coordinating body sends a test item to a reference laboratory for testing. Then, the coordinating body sends the item to each participating laboratory for subsequent testing.
- Each participant laboratory will independently test the item, submit their results to the coordinating body, and forward the item to the next participating laboratory.
- After each participating laboratory has completed testing, the artifact is returned to the coordinating body.
- The coordinating body will evaluate the all the test results and issue a performance report to each participating laboratory.
- This is typically referred to as Round Robin Testing, and is one of the most common proficiency testing schemes used by PT providers.

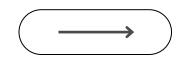
Why Validate



When to Validate?

- Before initial use in routine testing
- When transferred to another laboratory
- Whenever the conditions or method parameters for which the method has been validated change and the change is outside the original scope of the method
- When an established method is used in a different laboratory, with different analysts and different equipment

What to Validate? Laboratory developed method Non standard methods



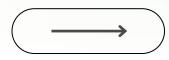
Points to Consider in Method Validation

questions:

- What analytes should be detected
- What are the sample matrices
- Are there any specific legislative or regulatory requirements
- Should it be qualitative or quantitative
- What are the required detection and quantitation limits
- What precision and accuracy is expected
- Which type of equipment to be used

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

The scope of the method and its validation criteria should be defined early in the process. These include the following

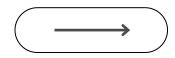

ASEAN JICA Food Value Chain Development Project

6

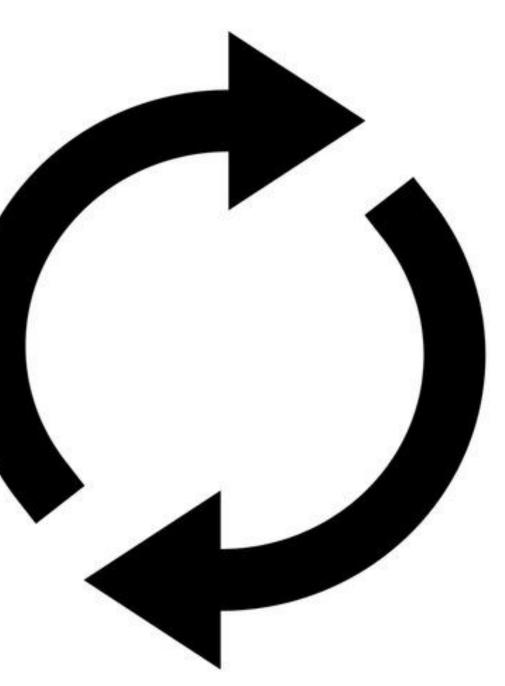
Steps in Conducting Method Validation

- Develop a validation protocol, an operating procedure or a validation master plan for the validation
- For a specific validation project define owners and responsibilities
- Develop a validation project plan
- Define the application, purpose and scope of the method
- Define the performance parameters and acceptance criteria
- Define validation experiments
- Verify relevant performance characteristics of equipment
- Qualify materials, e.g. standards and reagents for purity, accurate amounts and sufficient stability
- Perform pre-validation experiments

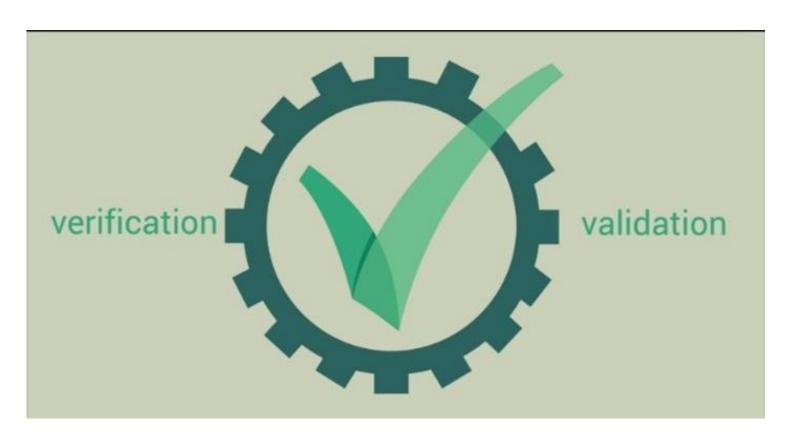
- Adjust method parameters or/and acceptance criteria if necessary
- Perform full internal (and external) validation experiments
- routine
- Define criteria for revalidation
- Define type and frequency of system suitability tests and/or analytical quality control (AQC) checks for the routine
- Document validation experiments and results in the validation report

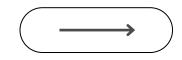


ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2


- Develop SOPs for executing the method in the

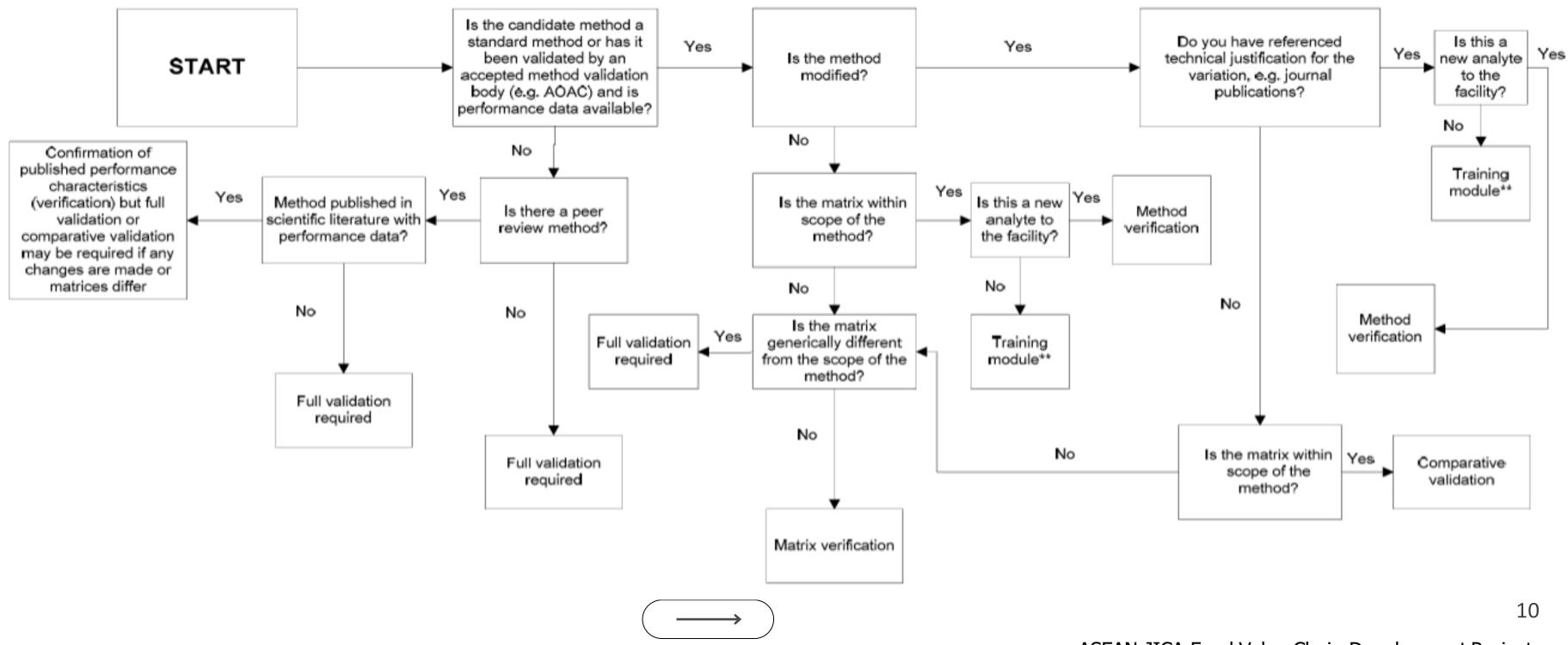
Revalidation


- Revalidation is necessary whenever a method is changed, and the new parameter lies outside the operating range.
- Revalidation is also required if the scope of the method has been changed or extended


ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

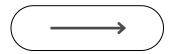
Method Validation vs Verification

- intended use are fulfilled (ISO/IEC 17025:2017)
- use (ISO/IEC Guide 99:2007)



ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

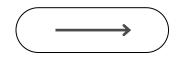
• *Validation* is the confirmation by examination and the provision of objective evidence that the particular requirements for a specific


• *Verification* is the provision of objective evidence that a given item fulfils specified requirements or where the specified requirements are adequate for an intended

Method Validation and Verification Decision Tree

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

Method Validation Parameters and Criteria (Quantitative)


ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

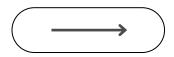
ASEAN JICA Food Value Chain Development Project

11

1. Sensitivity / Linearity

The sensitivity (or inclusivity) of a method is the *Criterion:* rate of change of the measured response with change in the concentration (or amount) of analyte Deviation of back-(or microorganism). For instrumental systems, calculated concentration sensitivity is represented by the slope (b) of the from true concentration $\leq \pm$ 20 % calibration curve (y = a + bx) and can be determined by a classical least squares procedure Cmeasured-Ctrue $\times 100$ (for linear fits), or experimentally, using samples containing various concentrations of the analyte.

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2


ASEAN JICA Food Value Chain Development Project

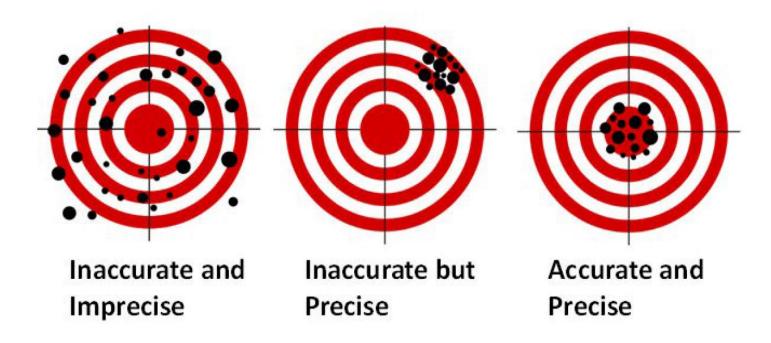
12

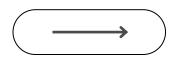
2. Recovery

Recovery of an analyte through an analytical method, is referred to as **'apparent recovery'**. The proportion of analyte determined remaining at the final point of the analytical method following its addition (usually to a blank sample) prior extraction. Usually expressed as a percentage. Routine recovery refers to the determination(s) performed with the analysis of each batch of samples.

Recovery of an analyte after extraction and clean up steps. The proportion of analyte (yield) remaining at the point of the final determination following its addition (usually to a blank analytical test portion) prior to extraction. Usually expressed as a percentage. Also referred to as 'extraction recovery', 'absolute recovery'.

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2


Criterion: 70-120 %

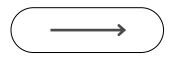

How? Average recovery for each spike level tested

13

3. Precision

The closeness of agreement between independent analytical results obtained by applying the experimental procedure under stipulated conditions. The smaller the random part of the experimental errors which affect the results the more precise the procedure. A measure of precision (or imprecision) is the standard deviation

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2


Criterion: ≤ 20 %

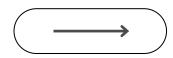
How? Repeatability RSDr for each spike level tested

3a. Repeatability

Repeatability is the precision estimate obtained when measurement results are produced in one facility and tests are performed on identical test items during a short interval of time by one operator using the same equipment under conditions that are as constant as possible (e.g. incubation time and temperature). It can be expressed as standard deviation (*s*), variance (*s*2), probability distribution function, etc for a suitable number of measurements made under repeatability conditions.

Instrumental repeatability may be determined by the injection of the standard solutions that are used to prepare the working calibration curve as well as an incurred or fortified sample at each of the spike levels 7 times. These injections should be done in random order to minimize bias. Calculate mean, standard deviation and percent relative standard deviation.

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2


s. *Criterion:* ≤ 20 %

How? Repeatability RSDr ve for each spike level tested

15

3b. Reproducibility

Reproducibility is the precision estimate obtained when a series of measurements are made under **more variable conditions**, i.e. **the same method on identical test items used by different operators with different equipment in different facilities at different times.** It can be expressed as standard deviation (s), variance, probability distribution factor, etc. of suitable number of determinations on identical specimens analyzed over several days with at least two different calibration standards.

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

Criterion: ≤ 20 %

How? Repeatability RSDr for each spike level tested

4. Limit of Quantitation / Lowest Validated Level

The lowest concentration or mass of the analyte that has been validated with acceptable accuracy by applying the complete analytical method and identification criteria.

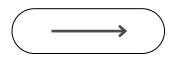
Refers to the smallest analyte concentration or mass, which can be quantitatively analyzed with a reasonable reliability by a given procedure.

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

How? Lowest spike level meeting the identification and method performance criteria for recovery and precision

Criterion: ≤MRL , 70-120 %

5. Limit of Detection (LOD)


means the validated lowest residue concentration which can be quantified and reported by routine monitoring with validated control methods; in this respect it can be regarded as the LOQ

• Method Detection Limit (MDL)

MDL is a term that should be applied to extraction and analysis methods developed for the analysis of specific analytes within a matrix. The MDL can be defined as the smallest amount or concentration of an analyte that can be reliably detected or differentiated from the background for a particular matrix (by a specific method).

• Instrument Detection Limit (IDL)

the smallest amount of an analyte that can be reliably detected or differentiated from the background on an instrument (i.e. instrumental noise). As the sensitivity increases, the IDL decreases, and as the instrumental noise decreases, so does the IDL.

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

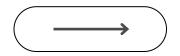
Approach in Determining LOD

LOD based on visual evaluation

Visual evaluation may be used for non-instrumental methods but may also be used with instrumental methods. It is also useful for establishing the LOD for qualitative measurements.

• The detection limit is determined by the analysis of sample blanks samples with known concentrations of analyte and by establishing the minimum level at which the analyte can be reliably detected. Sample blanks are spiked with an analyte at a range of concentration levels. At each concentration level, it will be necessary to measure approximately 7 independent replicates (as mentioned previously, in reality this number is often surpassed). Measurement of the replicates at various levels should be randomised. A response curve of percentage positive (or negative) results versus concentration should be constructed from the data, from which it should be possible to determine, by inspection, the threshold concentration at which the test becomes unreliable.

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

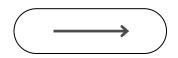

Approach in Determining LOD

LOD based on the standard deviation of the blank

The detection limit may be determined by the analysis of a large number of blanks (n \geq 20 is recommended). Where independent sample blanks are measured once each ($n \ge 10$ is recommended) and independent sample blanks fortified at lowest acceptable concentration are measured once each ($n \ge 10$ is recommended). The LOD is expressed as mean sample blank value plus three standard deviations (+ 3s).

LOD based on the range in which the calibration equation applies

Using the estimate of LOD as the blank plus three standard deviations of the blank, the instrument response to a blank is taken as the intercept of the calibration (a), and the standard deviation of the instrument response is taken as the standard error of the calibration (sy/x). Therefore from the calibration equation if yLOD = a + 3 sy/x = a + bxLOD, then xLOD = 3 sy/x/b.

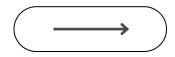

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

20

6. Specificity

The ability of the detector (supported by the selectivity of the extraction, clean-up, derivatization or separation, if necessary) to provide signals that effectively identify the analyte. GC-MS with EI is a fairly non-selective determination system capable of high specificity. High resolution mass MS and MSMS can be both highly selective and highly specific.

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

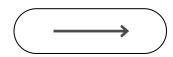

How? Response in reagent blank and blank control samples

Criterion: \leq 30% of Reporting Limit

7. Matrix Effect

An influence of one or more co extracted compounds from the sample on the How? Difference of response from measurement of the analyte concentration or standard in matrix extract and standard mass. It may be observed as increased or in solvent decreased detector response compared with that produced by solvent solutions of the analyte. The *Criterion:* in case of more than 20 % presence or absence of such effects may be signal suppression or enhancement, demonstrated by the difference of response from matrix effects need to be addressed in standard in matrix extract and standard in calibration solvent

$$\% ME = \left(\frac{Rstd in matrix extract}{Rstd in solvent} - 1\right)$$



ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

X 100

8. Ruggedness / Robustness

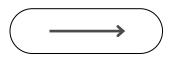
The ruggedness (a measure of robustness) of a method is the degree to which results are unaffected by minor changes from the experimental conditions described in the method, for example, small changes in temperature, pH, reagent concentration, flow rates, extraction times, composition of mobile phase. Ruggedness testing provides an indication of the methods reliability during normal usage.

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

How? Average recovery for each spike level tested

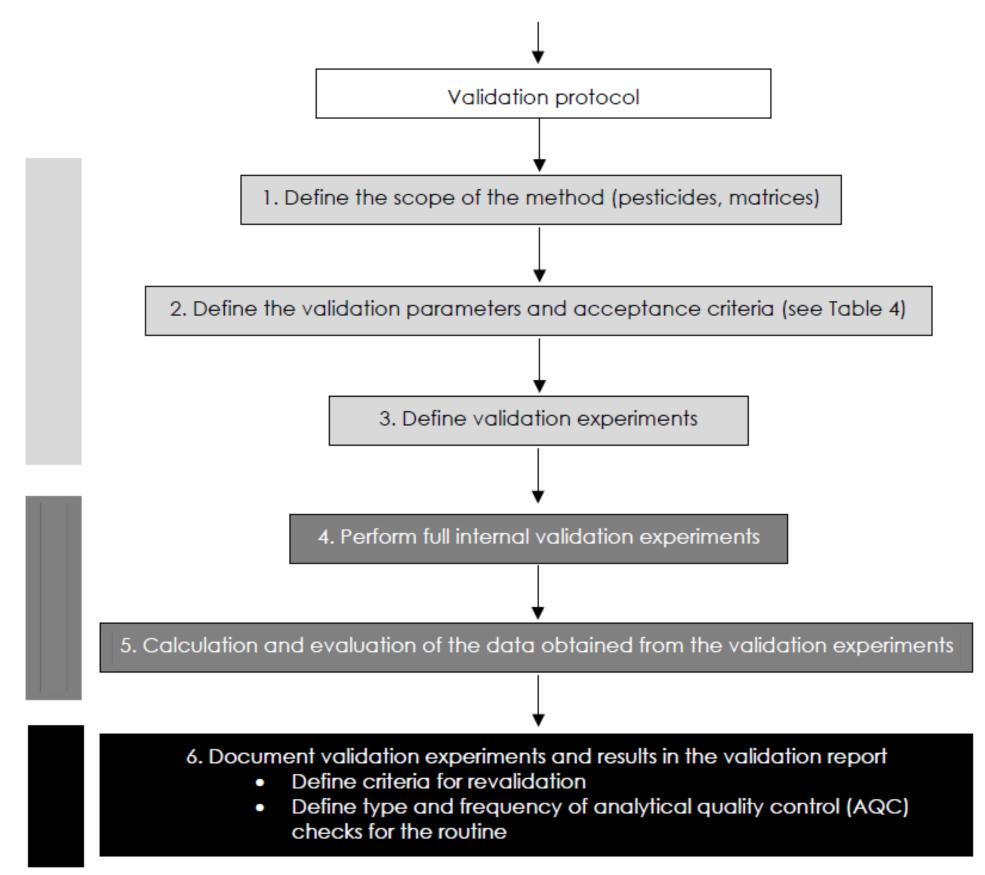
Criterion: 70-120 %

Table 4. Validation parameters and criteria


Parameter	What/how	Criterion	Cross reference to AQC document
Sensitivity/linearity	Linearity check from five levels	Deviation of back- calculated concentration from true concentration ≤± 20 %	C14-C19
Matrix effect	Difference of response from standard in matrix extract and standard in solvent	*	C21-C29 Glossary
LOQ	Lowest spike level meeting the identification and method performance criteria for recovery and precision	≤MRL	G6 ¹⁰
Specificity	Response in reagent blank and blank control samples	≤ 30 % of RL	C41
Recovery	Average recovery for each spike level tested	70-120 %	G3,G6
Precision (RSD _r)	Repeatability RSD, for each spike level tested	≤ 20 %	G3, G6
Precision (RSD _{wR})	Within-laboratory reproducibility, derived from on-going method validation / verification	≤ 20 %	G3, G6
Robustness	Average recovery and RSD _{wR} , derived from on-going method validation / verification	See above	G6, C39-C44
lon ratio	Check compliance with identification requirements for MS techniques	Table 3	Section D
Retention time		±0.1 min.	D2

*in case of more than 20 % signal suppression or enhancement, matrix effects need to be addressed in calibration (C21-C29).

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2


Method Validation Parameters and Criteria (Quanlitative)

- Screening Method •
 - If the method is intended to be used as a qualitative method, there are no requirements with regard to recovery of the analytes.
 - the possible presence of false detects should be checked using non-spiked / blank samples. determination of selectivity
- The validation of a screening method based on an SDL can be focused on detectability. – at least 20 samples spiked at the estimated SDL.
 - minimum of two samples for each individual commodity included and will be representative for the
 - The SDL of the qualitative screening method is the lowest level at which an analyte has been detected – The samples selected should represent multiple commodities from the same commodity group, with a intended scope of the laboratory.
 - Additional validation data can be collected from on-going AQC-data and method performance verification during routine analysis.

INITIAL VALIDATION PLAN FOR QUANTITATIVE METHODS

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

Method Validation Procedure: outline and example approach

Validation needs to be performed

- for all analytes within the scope of the method
- for at least 1 commodity from each of the commodity groups (as far as they are within the claimed scope of the method or as far as applicable to samples analyzed in the laboratory)

Experimental:

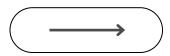
A typical example of the experimental set up of a validation is: Sample set (sub-samples from 1 homogenized sample):

- Reagent blank
- 1 blank (non-spiked) sample
- 5 spiked samples at target LOQ
- 5 spiked samples at 2-10x target LOQ

Instrumental sample sequence:

- Conditioning blanks in GC
- Calibration standards
- Reagent blank
- Blank sample
- 5 spiked samples at target LOQ
- 5 spiked samples at 2-10 x target LOQ
- Calibration standards

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2


Method Validation Procedure: outline and example approach

Spiking of commodities is a critical point in validation procedures. In general, the spiking procedure should reflect as much as possible the techniques used during routine application of the method. If for example, samples are milled cryogenically and extracted in frozen condition spiking must be done on frozen analytical test portions of blank material and extracted immediately. Where samples are milled at room temperature and extracted on average after 20 min, spiking should be done on blank analytical test portions at room temperature. In general, spiking of samples will not simulate incurred residues even if the spiked sample is left standing for a certain time. To study the relative extractability of incurred residues agriculturally treated samples should be taken.

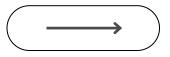
Data evaluation:

Inject the sample sequence, calibrate and quantify as is described in this AQC document.

Evaluate the parameters from Table 4 and verify them against the criteria.

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

Routine Recovery Checks


Analytes for recovery check (minimum)

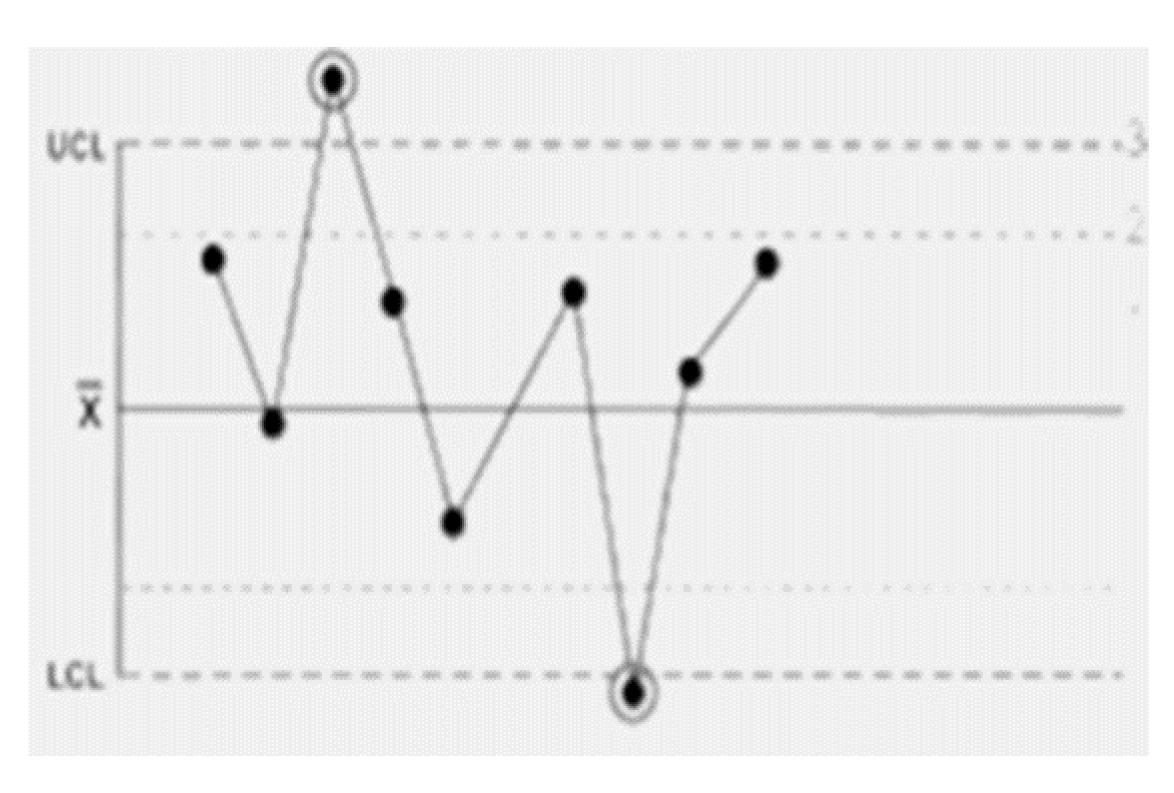
Number of analytes

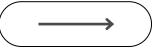
At least 10 % of the scope per detection system covering all critical aspects of the method

Minimum frequency of recovery checks

Level	Reporting Limit
-------	-----------------

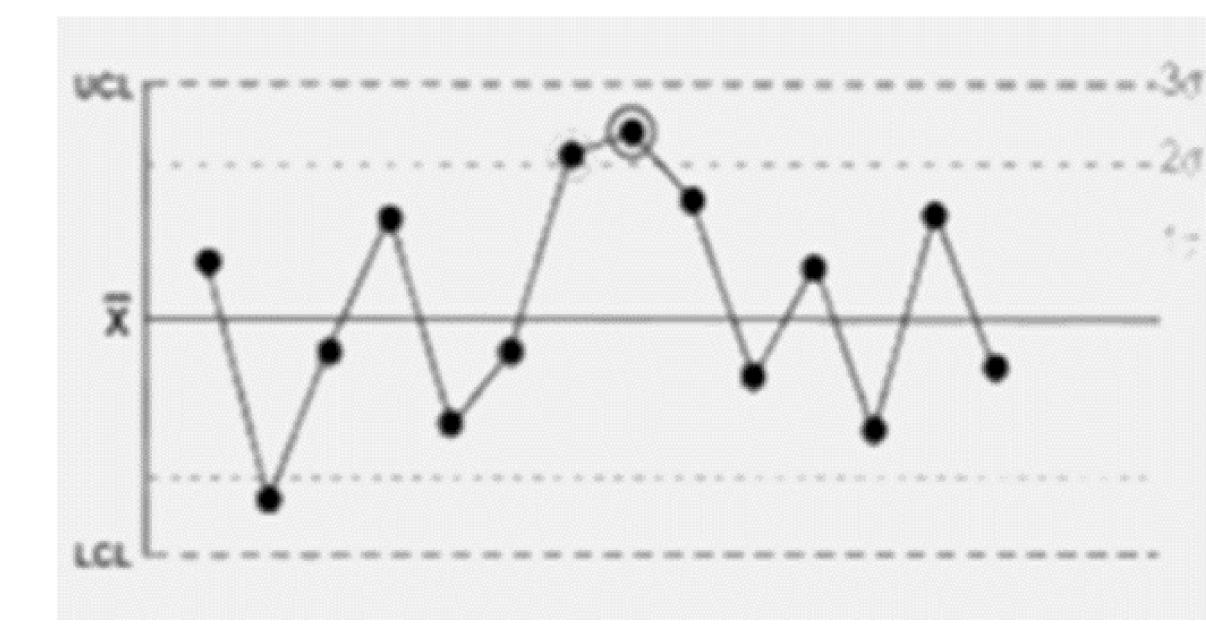
ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

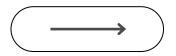

All other analytes


Within a rolling programme to include all other analytes as well as representative commodities from different commodity groups

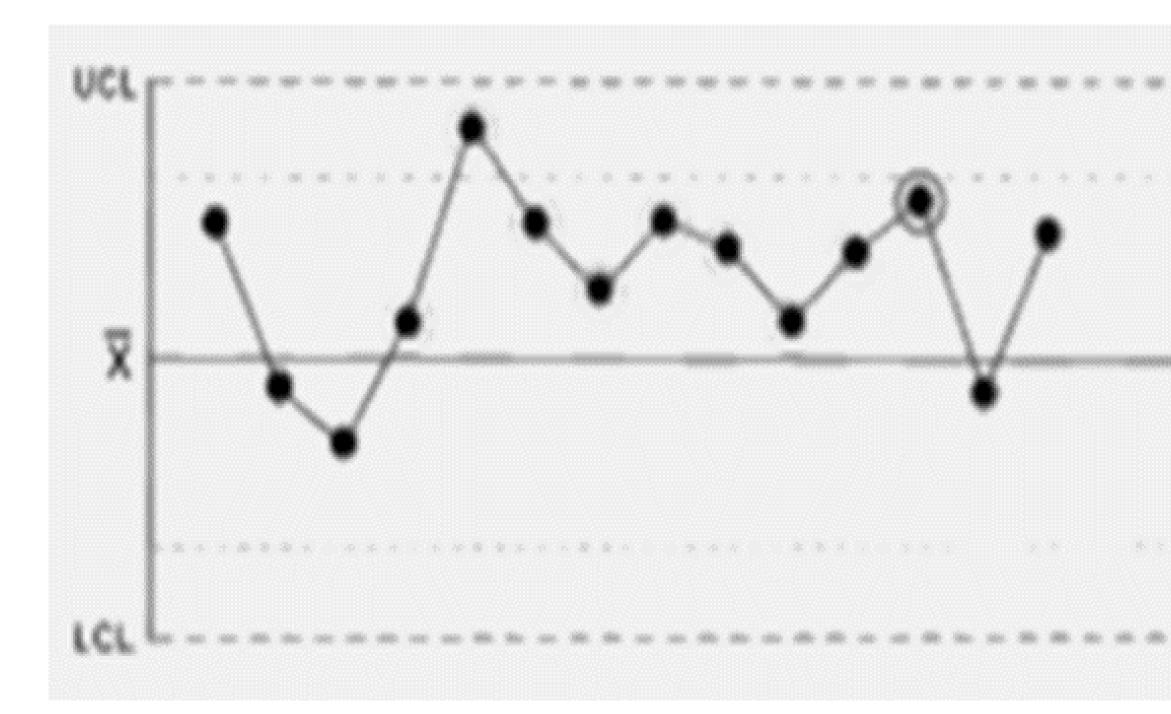
At least every 12 months, preferably every 6 months

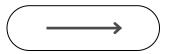
Reporting Limit


29

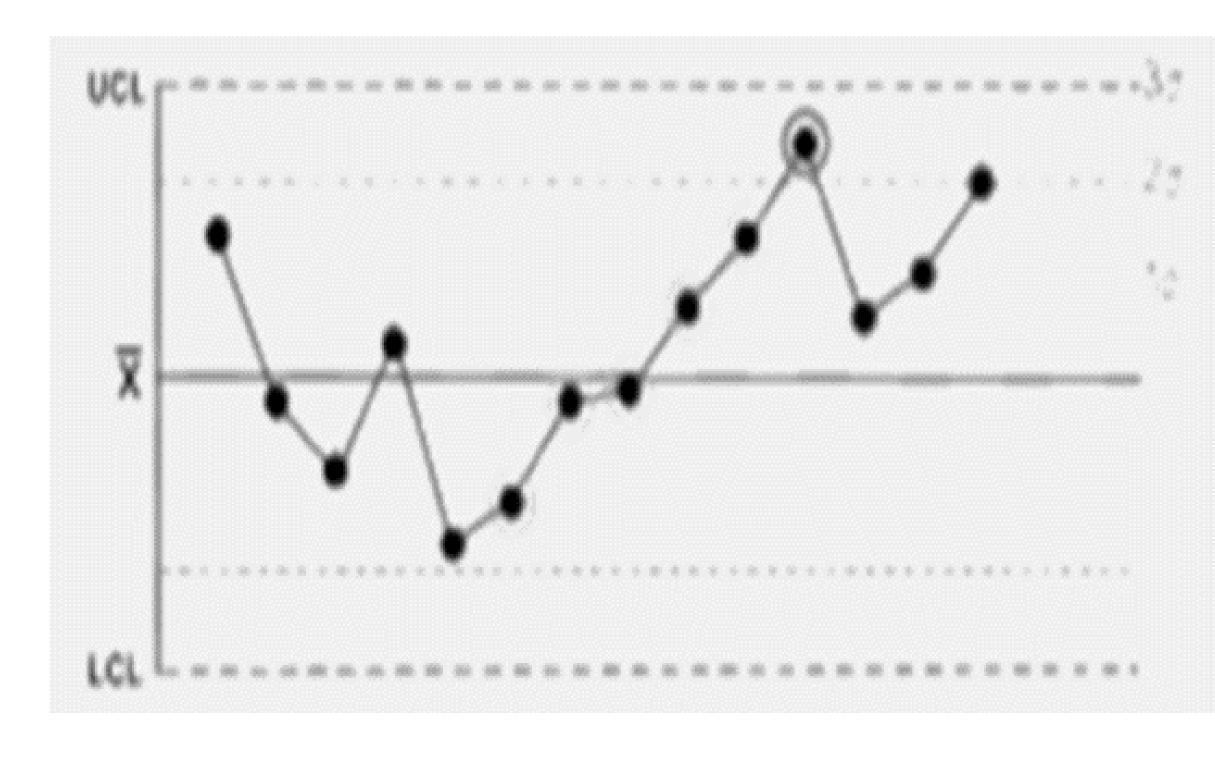


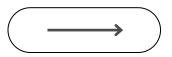
ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2


One value or more fall outside the upper and lower action limit



ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2


2. Two out of threeconsecutive values falloutside lower or upperwarning limit on the sameside



ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

3. A series of seven oreight consecutive valuesfall all above or allbelow the mean

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED SANTE 11312/2021v2

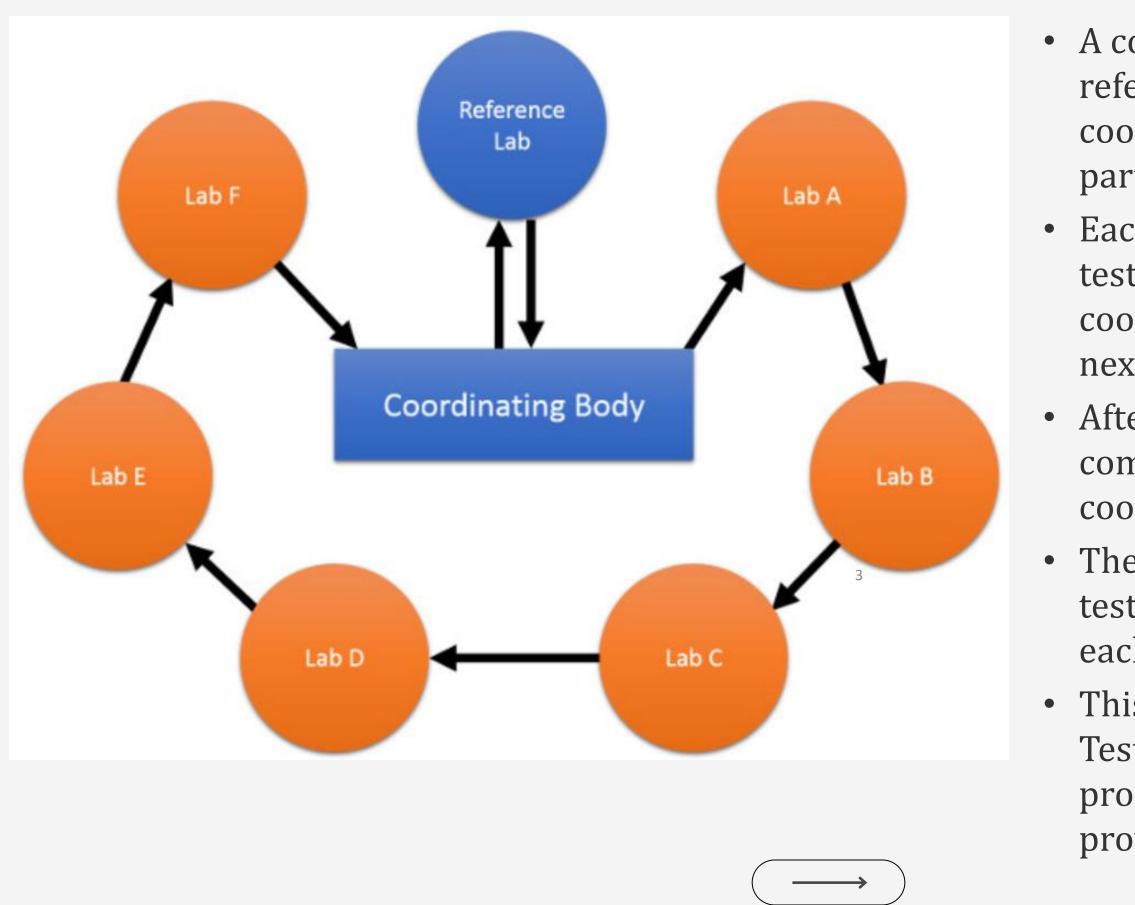
4. Seven points in a row are continually decreasing or increasing

PROFICIENCY TESTING on PESTICIDE RESIDUE ANALYSIS

1

Pesticide Analytical Laboratory Section

Plant Product Safety Services Division Bureau of Plant Industry Quezon City, metro manila, philippines


ASEAN JICA Food Value Chain Development Project 01/ /2025

> PRESENTED BY JULIO SALVADOR C. VALEZA PESTICIDE RESIDUE UNIT

What is Proficiency Testing

According to ISO/IEC 17043:2010, proficiency testing (PT) is the evaluation of participant performance against pre-established criteria by means of interlaboratory comparisons.

a proficiency test is a method used to demonstrate competency and validate a laboratory's measurement process by comparing your results to the results of a reference laboratory and other participant laboratories.

January, 2025

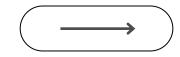
- A coordinating body sends a test item to a reference laboratory for testing. Then, the coordinating body sends the item to each participating laboratory for subsequent testing.
- Each participant laboratory will independently test the item, submit their results to the coordinating body, and forward the item to the next participating laboratory.
- After each participating laboratory has completed testing, the artifact is returned to the coordinating body.
- The coordinating body will evaluate the all the test results and issue a performance report to each participating laboratory.
- This is typically referred to as Round Robin Testing, and is one of the most common proficiency testing schemes used by PT providers.

Why Proficiency Testing Important

A measurement of method 01

Technical training of personnel

⁰³ Traceability of standards


Estimates of measurement uncertainty 04)

Proficiency Testing

 According to ISO Guide 43, Proficiency Testing is a formal exercise managed by a coordinating body which includes a standard or **reference laboratory**. The results are issued in a formal report that clearly provides the En and Z score.

Interlaboratory Comparison

- conditions.
- report.
- participating members.

According to ISO/IEC 17043:2010, inter-laboratory comparison (ILC) is the organization, performance, and evaluation of measurements or tests on the same or similar items by two or more laboratories or inspection bodies in accordance with predetermined

• ISO Guide 43 describes an inter-laboratory comparison as an exercise that is performed by agreement between two or more participating laboratories where the results are issued in a formal

• An inter-laboratory comparison does not require the use of a reference laboratory or a coordinating body. Therefore, participant laboratories are only comparing performance amongst the group of

How to **Evaluate** Proficiency Testing **Results?**

• Proficiency testing results are commonly evaluated using two methods described in ISO/IEC 17043;

1.Normalized Error 2.Z-Score.

Normalized error is a statistical evaluation used to compare proficiency testing results between the participant and the reference laboratory where the uncertainty in the measurement result is included.

- When the value of $|En| \le 1$ (i.e. between -1 and +1), the results are considered satisfactory.
- When the value of |En| > 1 (i.e. greater than +1 or less than -1), the results are considered unsatisfactory.

$$E_n = \frac{x_{Lab} - x_{Ref}}{\sqrt{U_{Lab}^2 + U_{Ref}^2}}$$

Where,

x_{Lab} = measurement result of participating lab x_{Ref} = measurement result of reference lab ULab = Expanded Uncertainty (i.e. 95%) of participating lab URef = Expanded Uncertainty (i.e. 95%) of reference lab

How to **Evaluate** Proficiency Testing **Results?**

• Proficiency testing results are commonly evaluated using two methods described in ISO/IEC 17043;

1.Normalized Error 2.Z-Score.

*Z***-score** is a statistical measurement of a score's relationship (i.e. how many **standard deviations** above or below the population mean) to the mean in a set of scores.

It is a statistical evaluation used to review the results of all participants and identify outliers and exclude their data from proficiency testing results.

> When determining whether a participant's results are satisfactory, unsatisfactory, or questionable, the following rules are used;

- When the value of $Z \leq 2$, the results are considered satisfactory.
- When the value of $Z \ge 3$, the results are considered unsatisfactory.
- When the value of $Z \ge 2$ and $Z \le 3$, the results are considered questionable.

$$z_i = \frac{(y_i - \bar{y})}{\sigma}$$

Where,

y_i = measurement result of participating lab ybar = the population mean (i.e. average) σ = the standard deviation of the population

ISO/IEC 17025 Requirement for Proficiency Testing

Ensuring the Validity of Results

In section 7.7.2, the ISO/IEC 17025 standard states that laboratories shall monitor their performance by comparing their results with other laboratories. The two methods that are recommended are: a. Proficiency Testing or b. Interlaboratory Comparisons See the excerpt below:

"7.7 Ensuring the validity of results 7.7.2 The laboratory shall monitor its performance by comparison with results of other laboratories, where available and appropriate. This monitoring shall be planned and reviewed and shall include, but not be limited to, either or both of the following:

a) participation in proficiency testing;

NOTE – ISO/IEC 17043 contains additional information on proficiency tests and proficiency testing providers. Proficiency testing providers that meet the requirements of ISO/IEC 17043 are considered to be competent.
b) participation in interlaboratory comparisons other than proficiency testing."

ISO/IEC 17025 Requirement for Proficiency **Testing**

Externally Provided Products and Services

In section 6.6.1, the ISO/IEC 17025 standard states that laboratories must use only suitable externally provided services when it affect laboratory activities. If you read the note below the section, you will see that proficiency testing services should be included in externally provided services.

• If you maintain an Approved Supplier List (like many other labs), then you may want to add your proficiency testing providers to it. See the excerpt below:

"6.6 Externally provided products and services" **6.6.1** The laboratory shall ensure that only suitable externally provided products and services that affect laboratory activities are used, when such products and services:

a) are intended for incorporation into the laboratory's own activities;

b) are provided, in part or in full, directly to the customer by the laboratory, as received from the external provider;

c) are used to support the operation of the laboratory. NOTE Products can include, for example, measurement standards and equipment, auxiliary equipment, consumable materials and reference materials. Services can include, for example, calibration services, sampling services, testing services, facility and equipment maintenance services, proficiency testing services and assessment and auditing services."

9

ISO/IEC 17025 Requirement for Proficiency Testing

Improvement

In section 8.6.1, the ISO/IEC 17025 standard states that laboratories must identify and select opportunities for improvement and implement any necessary actions. If you read the note just below the section, you will see that the standard recommends using proficiency testing results to find opportunities for improvement. See the excerpt below:

"8.6 Improvement (Option A) 8.6.1 The laboratory shall identify and select opportunities for improvement and implement any necessary actions.

NOTE Opportunities for improvement can be identified through the review of the operational procedures, the use of the policies, overall objectives, audit results, corrective actions, management review, suggestions from personnel, risk assessment, analysis of data, and proficiency testing results."

As you can see, the ISO/IEC 17025:2017 standard requires you to participate in a proficiency testing or interlaboratory comparison program (where available and appropriate).

Additionally, the standard recommends that you;

- consider proficiency testing providers as service providers and
- use proficiency testing results to find opportunities for improvement.

10

Estimation of Measurement Uncertainty

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS **IN FOOD AND FEED** SANTE 11312/2021 v2

Pesticide Analytical Laboratory Section

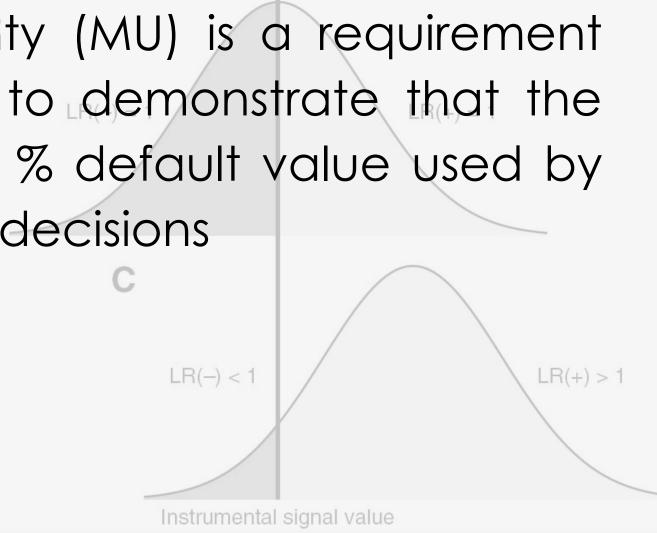
Plant Product Safety Services Division Bureau of Plant Industry Quezon City, metro manila, philippines

ASEAN JICA Food Value Chain Development Project 01/ /2025

PRESENTED BY JULIO SALVADOR C. VALEZA **PESTICIDE RESIDUE UNIT**

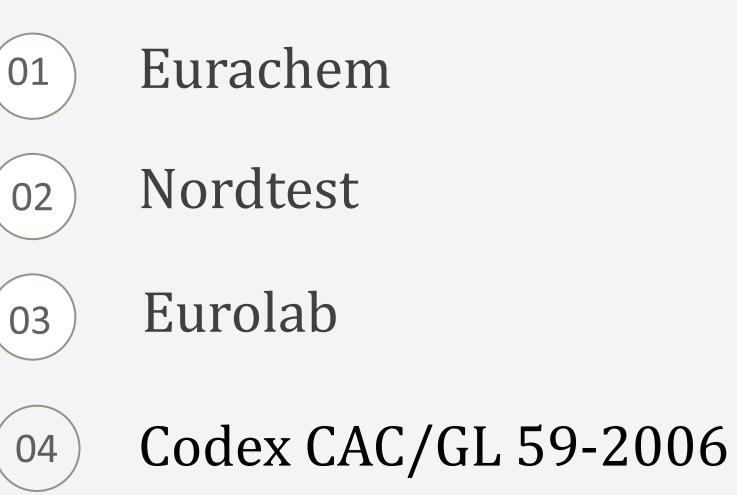
MEASUREMENT UNCERTAINTY

Establishment of the measurement uncertainty (MU) is a requirement under ISO/IEC 17025 (E5). It is also required to demonstrate that the laboratory's own MU is not exceeding the 50 % default value used by regulatory authorities in cases of enforcement decisions


$$U' = k \times u'$$
 Eq. 1

Α

LR(-) > 1


Cut-off value
True-positive rate
False-negative rate

2

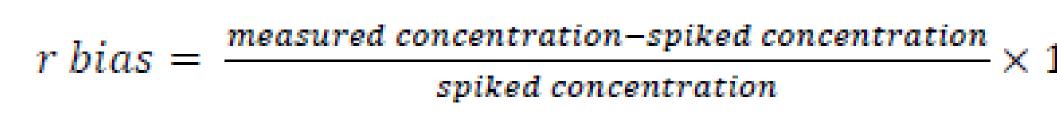
LR(+) < 1

Documents Recommended

Approach 1. Estimating MU based on intralaboratory validation/QC data.

$$u' = \sqrt{u'(bias)^2 + u'(precision)^2}$$

with u' = measurement uncertaintly u'(bias) = uncertainty component for the bias u'(precision) = uncertainty component for the precision


first estimate of u'(bias) and u'(precision) is usually obtained at the initial validation stage for each pesticide/representative matrix/level combination. However, a much more realistic estimation is calculated for each pesticide from a number (usually, ≥ 10) of long-term QC tests (spiked samples) for each pesticide for one or more matrices of the same commodity group.

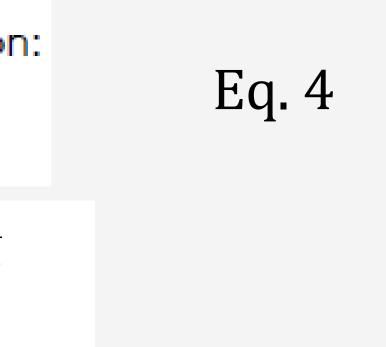
January, 2025

Eq. 2

Estimation of the u'(bias) component **without correction for recovery**

 bias is the difference between the measured value and the true value. In absence of CRM or PT assigned values, the true value is the spiked concentration, and the bias is the difference between the spiked and the measured concentration. The bias is given by:

 $\times 100\%$


Eq. 3

ASEAN JICA Food Value Chain Development Project

Estimation of the u'(bias) component without correction for recovery

u'(bias) can be calculated using the following equation: $u'(bias) = \sqrt{RMS'(bias)^2 + u'(Cref)^2}$

with RMS'(bias) = root mean square of the bias = $\sqrt{\frac{\sum bias_i^2}{N}} = \sqrt{mean_{bias}^2 + SD.P_{bias}^2}$ with mean _{bias} = the mean of the bias SD.P_{bias} = the population standard deviation of the bias (stdev.p in Excel) u'(C_{ref}) = uncertainty of the spiked concentration.

ASEAN JICA Food Value Chain Development Project

Estimation of the u'(bias) component without correction for recovery

When certified analytical standards and calibrated/verified volumetric material/balances are used to prepare the spiked samples, it can be assumed that the uncertainty associated with the spiking level is negligible. Equation 4 then simplifies to:

$$u'(bias) = \sqrt{mean_{bias}^2} + SD.P_{bias}^2$$

Eq. 5

ASEAN JICA Food Value Chain Development Project

Estimation of the u'(bias) component with correction for recovery

In case the analysis result is mathematically corrected for recovery using a recovery factor, then the u'(bias) can be calculated using the following equation:

$$u'(bias) = \sqrt{\left(\frac{RSD_{WR}}{\sqrt{N}}\right)^2 + u'(Cref)^2}$$

with RSD_{wR} = within-laboratory reproducibility of the recovery N = number of recovery tests

Eq. 6

ASEAN JICA Food Value Chain Development Project

Estimation of the u'(bias) component with correction for recovery

When certified analytical standards and calibrated/verified volumetric material/balances are used to prepare the spiked samples, it can be assumed that the uncertainty associated with the spiking level is negligible. Equation 6 then simplifies to:

$$u'(bias) = \frac{RSD_{WR}}{\sqrt{N}}$$

Eq. 7

Estimation of the u'(precision) component

The RSD_{wR} is preferably derived from spiked samples from ≥ 10 sample batches over a longer period of time (on-going validation). When multiple matrices from a commodity group are analysed and one RSD_{wR} value is used for that group, the RSD_{wR} should be based on spiked samples of different matrices reflecting the scope of analysis in order to obtain a realistic estimate for the commodity group.

$u'(precision) = RSD_{wR}$

Eq. 8

Estimation of the combined measurement uncertainty

The combined measurement uncertainty is estimated by equation 2, and using equation 5 and 8 is:

$$u' = \sqrt{mean_{bias}^2 + SD.P_{bias}^2 + RSD_{rW}^2}$$

When analysis results are mathematically corrected for recovery using a recovery factor, the combined measurement uncertainty is estimated by equation 2, using equation 7 and 8:

$$u' = \sqrt{\left(\frac{RSD_{wR}}{\sqrt{N}}\right)^2 + RSD_{wR}^2}$$

Eq. 9

Eq. 10

Date	QC samples spiked at 0.05 mg/kg	Measured (mg/kg)
10/Jan	Apple	0.051
26/Jan	Pear	0.045
04/Feb	Lettuce	0.050
08/Feb	cauliflower	0.056
22/Feb	Cherries	0.052
28/Feb	Onion	0.046
05/Mar	French beans	0.048
06/Mar	Carrots	0.045
22/Mar	Leek	0.037
	N	9
	mean	0.0478
	SD.P bias (stdev.p) (%)	
	standard dev. measured (mg/kg) (stdev.s)	0.00543
	RSD _{wr} (%)	11.357
	u'(bias) (%) [equation 5]	
	$u'(precision) = RSD_{wR}$ (%) [equation 8]	11.357
	u' combined (%) [equation 2 and 9]	15.920
	U' (expanded MU) (%) [equation 1]	31.839

Table C1. Example A, pesticide X (low bias, good within-lab repre-

The estimated expanded measurement uncertainty is 32 %. For pesticide X, the laboratory has demonstrated that the expanded MU is not exceeding the 50 % default value (E12). The regulatory authorities can use the 50 % default value for enforcement decisions.

rod	uci	bil	lity	
00	001	~	•• /	/

Rel. relative
bias (%)
[equation 3]
2
-10
0
12
4
-8
-4
-10
-26
-4.44

10.232

11.1555

12

Date	QC sample spiked at 0.05 mg/kg	Measured (mg/kg)	Rel. bias (%)
10/Jan	Apple	0.038	-24
26/Jan	Pear	0.034	-32
04/Feb	Lettuce	0.037	-26
08/Feb	cauliflower	0.042	-16
22/Feb	Cherries	0.039	-22
28/Feb	Onion	0.034	-32
05/Mar	French beans	0.036	-28
06/Mar	Carrots	0.034	-32
22/Mar	Leek	0.028	-44
	N	9	
	Mean	0.0358	-28.4
	SD.P bias (stdev.p) (%)		7.470
	standard dev. measured (mg/kg) (stdev.s) RSD _{wR} (%)	0.00396	
	u'(r bias) (%) [equation 5] u'(precision) = RSD _{wR} (%) [equation 8] u' combined (%) [equation 2 and 9] U' (expanded MU) (%) [equation 1]	11.073 31.424 62.849	29.4090

Table C2. Example B, pesticide Y (high bias, good within-lab reproducibility)

For pesticide Y, the laboratory has demonstrated that the expanded MU is exceeding the 50 % default value (E12) when results are not corrected for recovery. If, at the end of the analytical program, the results were corrected for the average recovery achieved over the 3 month period, then the u'(bias) need only to reflect the uncertainty associated with the mean recovery and equation 7 applies.²¹ The average recovery in example B is [100 %- bias%]=71.6 %. The RSD_{WR} of this recovery is the same as the RS_{WR} of the measured concentrations (11.073 %). With that, the u'(bias) according to equation 7 is 3.691%, resulting in a combined u' of 11.672 % and an expanded MU of 23 %.

January, 2025

Pesticides: Principle and Classification

Edna C. Mijares, RCh., MSc. Jefcor Laboratories, Inc.

Pesticides play a significant role in food production.

They protect or increase yields and may increase the number of times each year a crop can be grown on the same land, which is particularly important in countries that face food shortages.

Pesticides are intrinsically toxic and are deliberately spread in the environment. Their production, distribution and use requires strict regulation and control.

WHO, in collaboration with FAO, is responsible for assessing the risks to humans from pesticides, whether through direct exposure or residues in food, and for recommending adequate protection measures.

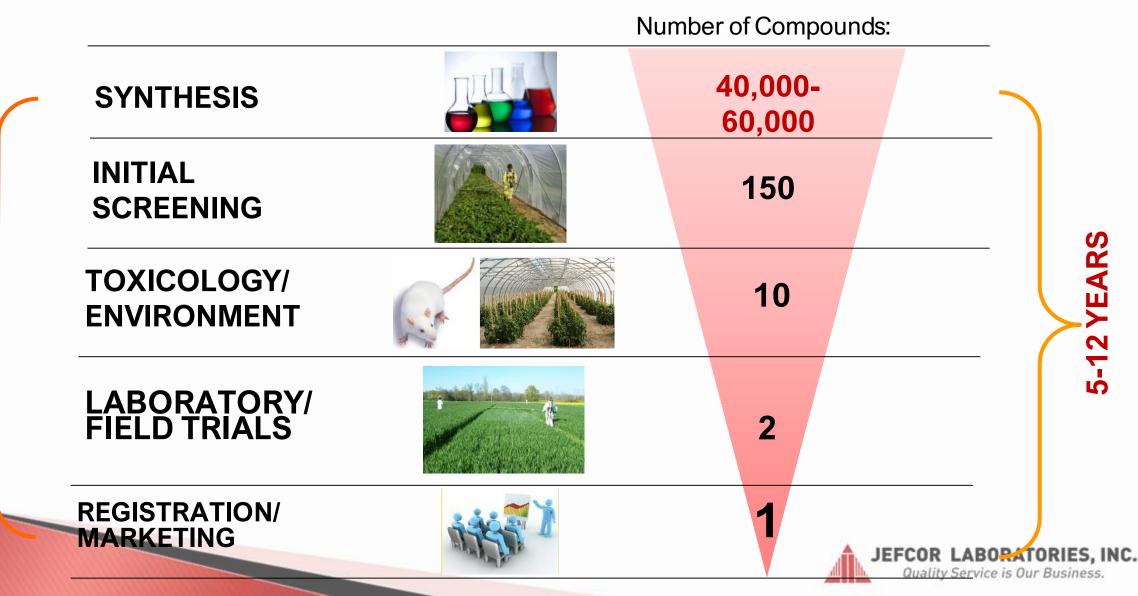
Pesticide (FAO, 2024)

<u>Any</u> substance intended for preventing, destroying, attracting, repelling, or controlling any pest including unwanted species of plants or animals during the production, storage, transport, distribution, and processing of food, agricultural commodities.

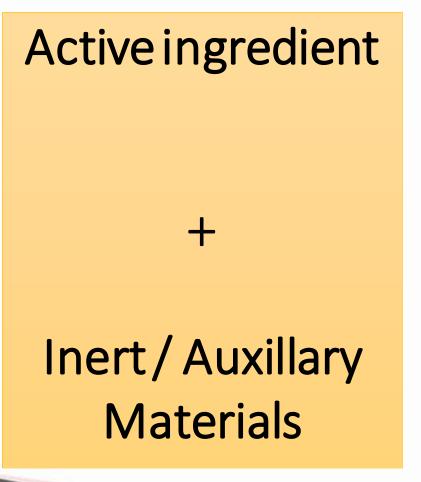
Includes substances on animal feeds or which may be administered to animals for the control of ectoparasites.

Pesticides (Cont'd.)

Includes substances intended for:


plant-growth regulator, defoliant, desiccant, fruit thinning agent, or sprouting inhibitor and substances applied to crops either before or after harvest to protect the commodity from deterioration during storage and transport.

The term normally excludes fertilizers, plant and animal nutrients, food additives and animal drugs.


Pesticide Development

From Test Tube to Registration

PhP 5-11 Billion

Pesticide Composition

Most important component

- Biologically active
- Poison
- destroys or controls the target pest
- all materials in the pesticide
 formulation other than active
 ingredient
 - solvents, emulsifiers,

carriers, binders, wetting agents, etc. JEFCOR LABORATORIES, INC. Quality Service is Our Business.

Name Classification of Pesticide

Chemical Name	 Name given by the International Union of Pure and Applied Chemists (IUPAC) standards as based on the structure of the compound
	- Example: Diazinon IUPAC name is:
	O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate
Common Name	 Adapted name accepted by international organizations Example: Diazinon
Trade Name or Brand Name	 Name given by the manufacturer of the pesticide formulation
	 Example: Diazinon is marketed as Diazol , Basudin

CLASSIFICATION OF PESTICIDES

Pesticides can be classified based on:

- Chemical composition
- Mode of Entry
- Target Pests or Organism
- Toxicity and Hazard
- Use / Usage
- Source/ Origin

Classification of Pesticides based on PEST Controlled

Pesticides are generally formulated for a **specific type of pest**

PESTICIDE TYPE	PEST/S CONTROLLED
Acaricide/Miticide	Mites, ticks and spiders
Avicide	Birds
Bactericide	Bacteria
Fungicide	Fungi
Insecticide	Insects
Molluscicide	Mollusks such as slugs and snails
Nematicide	Nematodes
Herbicide	Weeds
Rodenticide	Rodents such as rats, mice

Classification of Pesticides based on USE/ USAGE

1. General Use Pesticide

Products in this category may be handled by the general public in conformity with label directions.

2. Restricted Use Pesticide

Handled only by trained and certified applicators; present a greater degree of human and environmental danger; require more careful and precise application in conformity with label directions.

3. Banned Pesticide

Cannot be used under any circumstances

Classification of Pesticides based on MODE OF ENTRY

Stomach

poison generally enters the pest through the mouth by ingestion and absorption in the digestive tract

Contact

poison penetrates the insect body as a result of contact of the legs and other parts of the body on treated surfaces

Fumigant

poison is volatile and enters the body through the respiratory system of the insect

Systemic

poison is taken into the plant thorugh the roots of leaves and transported via the vascular system to the different parts of the plant. Sucking, boring and mining insects inquire the poison through feeding.

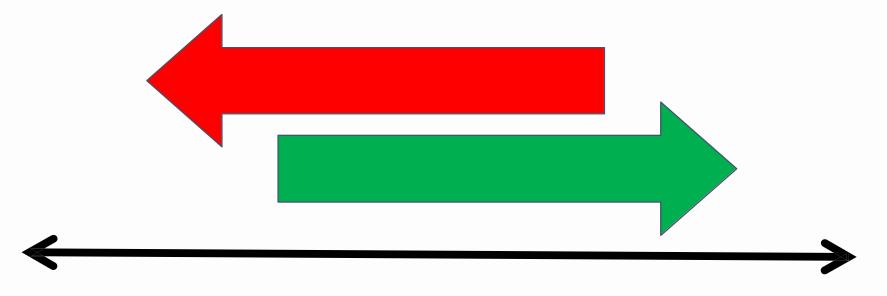
Classification of Pesticides based on TOXICITY and HAZARD

- > Toxicity
 - Innate property of a substance to produce harm/injury.
 - Acute effect after a single exposure
 - Chronic effect after repeated and long exposure
- Hazard

- Probability or likelihood of an adverse effect.

TOXICITY AND HAZARDS (FAO, 2022)

i) GHS - Acute toxicity


	Hazard category					
	Category 1	Category 2	Category 3	Category 4	Category 5	Not classified i.e. toxicity lower than Cat 5
Pictogram/ Symbol				\bigcirc	No pictogram	No pictogram
Signal Word	Danger	Danger	Danger	Warning	Warning	No signal word
Hazard Stateme	ent					
Oral	Fatal if swallowed	Fatal if swallowed	Toxic if swallowed	Harmful if swallowed	May be harmful if swallowed	
Dermal	Fatal in contact with skin	Fatal in contact with skin	Toxic in contact with skin	Harmful in contact with skin	May be harmful in contact with skin	
Inhalation	Fatal if inhaled	Fatal if inhaled	Toxic if inhaled	Harmful if inhaled	May be harmful if inhaled	
Colour band	PMS red 199 C	PMS red 199 C	PMS Yellow C	PMS Blue 293 C	PMS Blue 293 C	PMS Cool Grey 7C

https://www.who.int/publications/i/item/9789240005662

Guidance on good labelling practice for pesticides (Second revision)

JEFCOR LABORATORIES, INC. Quality Service is Our Business.

Classification of Pesticides based on TOXICITY and HAZARD

LD50 values (mg/kg)

Pesticides with <u>LOW</u> LD50 values *are more toxic*

than Pesticides with HIGH LD50 values

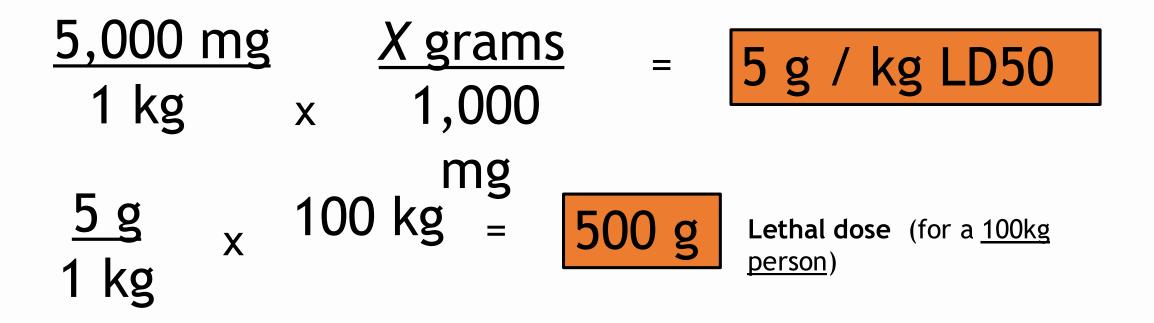
Classification of Pesticides based on HAZARD

LD₅₀ for the rat (mg/kg body weight)

Clas	S	Oral	Dermal
la	Extremely hazardous	< 5	< 50
lb	Highly hazardous	5–50	50-200
II	Moderately hazardous	50-2000	200–2000
Ш	Slightly hazardous	Over 2000	Over 2000
U	Unlikely to present acute hazard	5000 or	higher

Source: The WHO Recommended Classification of Pesticides by Hazard, 2019

Sample Computation:


• Given:

Body weight: 100 kgs Product: MsK 25EC

Oral LD₅₀: >5000 mg/kg BW

How much of MsK should be ingested by the farmer to get 50% chance of dying (relative to the <u>product toxicity</u>)?

Lethal dose for MsK is <u>500 g or ml for a 100 kg</u> <u>person (LD₅₀ of > 5,000 mg/kg bw).</u>

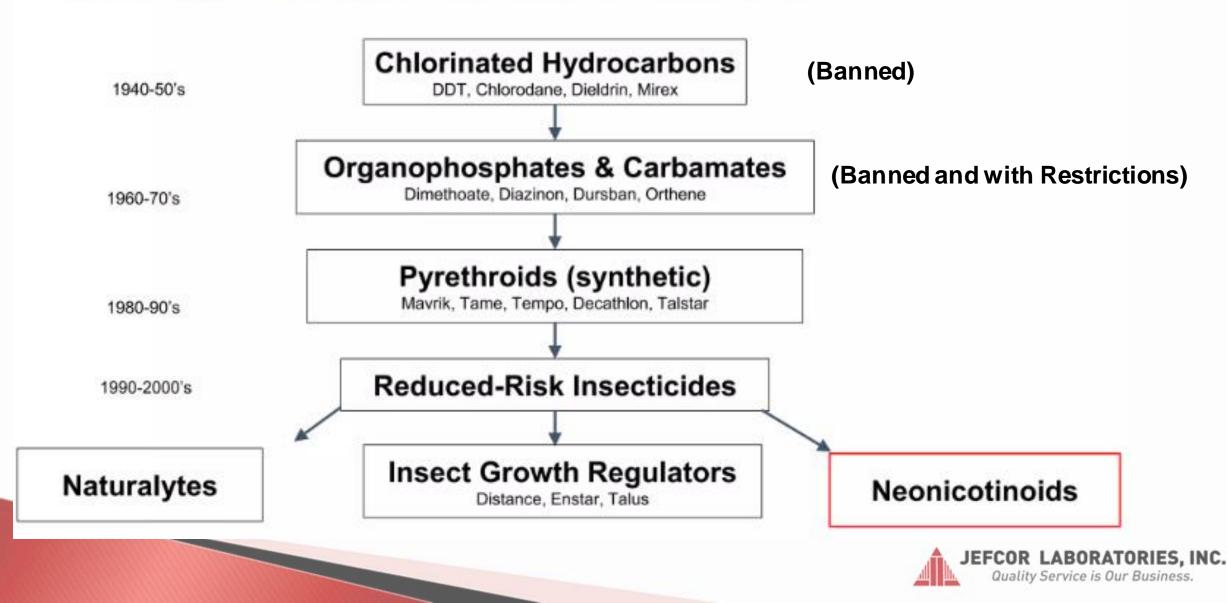
HAZARDS due to Pesticides

Activity	Type of Hazard
Manufacturing and Formulation	Inhalation, Dermal, Oral,
Transport	Spillage (Inhalation, Dermal)
Storage	Inhalation, Dermal, Oral (children)
Application	Inhalation, Oral, Dermal
General Public	Residues

Classification of Pesticides based on Formulation Type

- Bait mixture of active ingredient and food that attracts pests in the form of meal, pellets
- Soluble Powder (SP) dry powder which dissolves in water to spray solution
- Emulsion Concentrate (EC) contains active ingredient, petroleum solvent and emulsifiers. Pesticide is suspended in spray which is milky colored.
- Fumigant volatile liquids or solids packaged to release a toxic gas

Granule (G or GR) – dry inert materials (clay, walnut shell, corn cob) combined with active ingredient

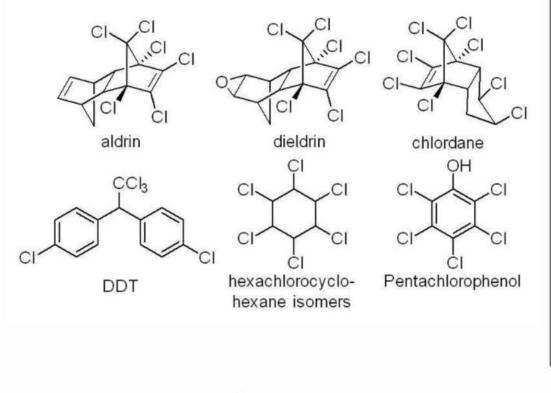


Classification of Pesticides based on Chemical Composition

- > Organochlorines
- > Organophosphates
- Carbamates
- Pyrethroids

History - Evolution of Insecticides

W


1. Organochlorines (chlorinated hydrocarbon insecticides) Insecticides that generally have a wide spectrum of insecticidal activity

a. Diphenyl aliphatics: DOT, dicofol, methoxychlor b. Benzene derivatves: BHC/HCH, lindane, Pentachlorophenol (PCP)

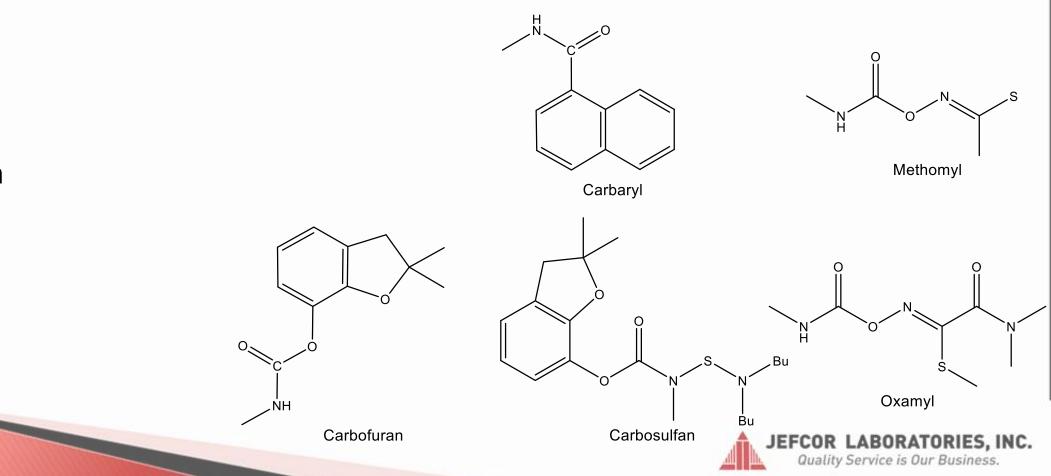
c. Cyclodienes: chlordane, aldrin, endrin, endosulfan, heptachlor

d. Polychloroterpenes; toxaphene

- Very persistent in the environment, does not degrade easily
- Bioaccumulative
- Most if not all are banned globally

2. Organophosphates

- Organophosphorus (OP) compounds are organic derivatives of phosphorus that have largely been used as pesticides and nerve agents, several of which are highly toxic.
- OPs interfere with the <u>acetylcholinesterase</u> enzyme, disrupting nerve impulses and killing or disabling the insect.

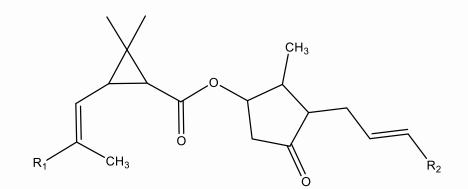

3. Carbamates (CMs)

H₂N OH Carbamic acid

Derivatives of carbamic acid

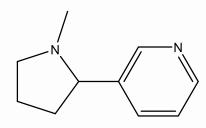
Acetylcholinesterase inhibitor, with improved degradability

Carbaryl Methomyl Carbofuran Carbosulfan Oxamyl

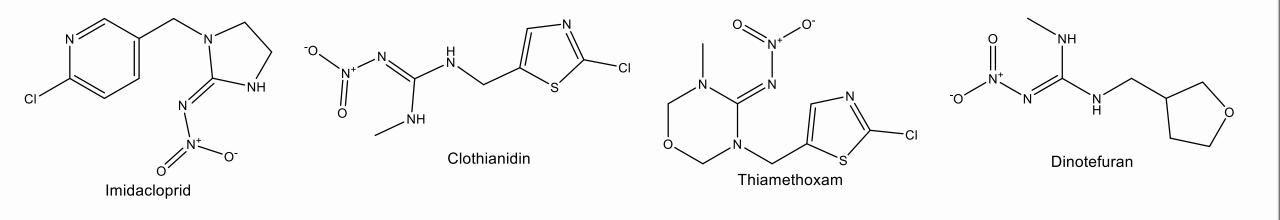

4. Pyrethroids (-thrins)

- an organic compounds analogous to the natural pyrethrins from Chrysanthemum.
 - Type I pyrethroids are derivatives of pyrethrin.

✓ Do not have a cyano group


• Type II pyrethroids have cyano group.

Type I Pyrethroids	Type I Pyrethroids
Allethrin	Cyfluthrin
Bifenthrin	Cyhalothrin
Permethrin	Cypermethrin
Phenothrin	Deltamethrin
Resmethrin	Fenvalerate
Tefluthrin	Fenpropathrin
Tetramethrin	Flucythrinate
	Flumethrin
	Fluvalinate



Neonicotinoids

Nicotine

- Nicotine analog antagonist to postsynaptic nicotine acetylcholine receptor (nAChR)
- Selectively toxic to insects

Organonitrogen Pesticides

- Pesticides that contain nitrogen in its chemical structure.
- Characterized by low detection limits in the range of low nanograms per liter with the use of mass spectrometer and nitrogen-specific detectors.

Biopesticides

- ✓ types of pesticides derived from such natural materials as animals, plants, bacteria, and certain minerals.
- ✓ include naturally occurring substances that control pests (biochemical pesticides), microorganisms that control pests (microbial pesticides), and pesticidal substances produced by plants containing added genetic material (plant-incorporated protectants) or PIPs

Classes of Biopesticides

- Biochemical pesticides are naturally occurring substances that control pests by non-toxic mechanisms; include substances that interfere with mating, such as insect sex pheromones, as well as various scented plant extracts that attract insect pests to traps.
- Microbial pesticides consist of a microorganism (e.g., a bacterium, fungus, virus or protozoan) as the active ingredient; the most widely used microbial pesticides are subspecies and strains of Bacillus thuringiensis, or Bt.
- Plant-Incorporated-Protectants (PIPs) are pesticidal substances that plants produce from genetic material that has been added to the plant. For example, scientists can take the gene for the Bt pesticidal protein and introduce the gene into the plant's own genetic material. Then the plant, instead of the Bt bacterium, manufactures the substance that destroys the pest.

ANALYSIS OF PESTICIDES

Pesticide Analysis

- Chromatographic techniques are used to detect pesticides, and the type of chromatography used depends on the properties of pesticides such as its:
 - ✓ Volatility✓ Solubility

Pesticide Analysis

- Solubility is a measure of the ability of a pesticide to dissolve in a solvent, which is usually water.
 - ✓ pesticides that are highly soluble in water dissolve easily and are more likely to move with water in surface runoff or to move through the soil in water than less-soluble pesticides.
- > Volatility is the tendency of a pesticide to turn into a gas or vapor
 - \checkmark some pesticides are more volatile than others.

- ✓ pesticide volatilization increases as temperatures and wind increase
- ✓ volatility is also more likely under conditions of low relative humidity

Pesticide Analysis

- Gas Chromatography (GC) used to analyze volatile pesticides, which can be vaporized and separated using a GC column.
 - Capillary gas chromatography is the most common technique used in pesticide analysis
- Liquid chromatography (LC) used to analyze nonvolatile and semi-volatile pesticides, which are dissolved in a liquid solvent and separated using an LC column.

 ✓ High-performance liquid chromatography (HPLC) and ultrahighperformance liquid chromatography (UHPLC) are examples of LC.

Safety Data Sheet (SDS)

- A safety data sheet (SDS) is a document that contains information about the hazards of a chemical and how to use it safely.
 - are used to help reduce or eliminate the risks of using, storing, and handling hazardous chemicals.
 - should be arranged into 16 sections and has to provide certain information as prescribed under the REACH regulations
 - ✓ Sections 1 through 8 contain general information about the chemical, identification, hazards, composition, safe handling practices, and emergency control measures (e.g., fire fighting).
 - ✓ Sections 9 through 11 and 16 contain other technical and scientific information, such as physical and chemical properties, stability and reactivity information, toxicological information, exposure control information, and other information including the date of preparation or last revision.
- Employers must ensure that the SDSs are readily accessible to employees for all hazardous chemicals in their workplace.

Safety Data Sheet (SDS)

- ✓ Section 1: Identification
- ✓ Section 2: Hazard(s) Identification
- ✓ Section 3: Composition/Information on Ingredient
- ✓ Section 4: First-Aid Measures
- ✓ Section 5: Fire-Fighting Measures
- ✓ Section 6: Accidental Release Measures
- ✓ Section 7: Handling and Storage
- ✓ Section 8: Exposure Controls/Personal Protection
- ✓ Section 9: Physical and Chemical Properties
- \checkmark Section 10: Stability and Reactivity
- ✓ Section 11: Toxicological Information
- ✓ Section 12: Ecological Information
- ✓ Section 13: Disposal Considerations
- ✓ Section 14: Transport Information
- ✓ Section 15: Regulatory Information
- Section 16: Other Information

Guidelines on Good Laboratory Practice in Pesticide Residue Analysis

Edna C. Mijares, RCh., MSc. Jefcor Laboratories, Inc.

Normative References:

CAC/GL 40-1993. Guidelines on Good Laboratory Practice in Pesticide Residue Analysis

- Maximum Residue Limits. Retrieved from: <u>https://croplife.org/crop-protection/regulatory/product-management/chemical-safety/maximum-residue-limits/</u>
- Codex Alimentarius. Retrieved form <u>https://www.fao.org/fao-who-codexalimentarius/en/</u>

OUTLINE

- General flowchart of pesticide residue analysis and corresponding CODEX guidelines per step
- > CAC/GL 40-1993 (Rev.2003, Amend. 2010)

- Guidelines are intended to assist in ensuring the reliability of analytical results in checking compliance with maximum residue limits of foods moving in international trade.
- Reliable analytical results are essential to protect the health of consumers and to facilitate international trade.

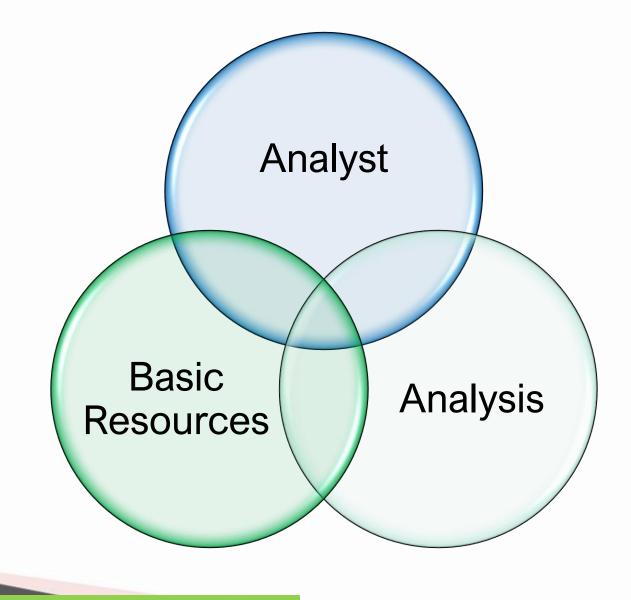
Codex Guidelines for Pesticide residues

Reference	Title	Committee	Modified
CXG-33- 1999	Recommended Methods Of sampling for the Determination Of Pesticide Residues for compliance with MRLs	CCPR	1999
CXG 40-1993	Guidelines on Good Laboratory Practice in Pesticide Residue Analysis	CCPR	2010
CXG 49-2003	Harmonized IUPAC Guidelines for Single-Laboratory Validation of Methods of Analysis	CCMAS	2003
CXG 59-2006	Guidelines on Estimation of Uncertainty of Results	CCPR	2011
CXG 84-2012	Principles and Guidance on the selection of Representative Commodities for the Extrapolation of Maximum Residue Limits for Pesticides to Commodity Groups	CCPR	2010
CXG 90-2017	Guidelines on Performance Criteria for Methods of Analysis for the Determination of Pesticide Residues in Food and Feed	CCPR	2017

Source: https://www.fao.org/fao-who-codexalimentarius/thematic-areas/pesticides/en/#c452840

Pesticide Residue
AnalysisCAC/GL 40-1993. Guidelines on Good Laboratory Practice in Pesticide
Residue Analysis

Sampling	• CAC/GL 33-1999. <i>Recommended Methods of Sampling for the Determination of Pesticide Residues for Compliance with MRLS</i>
Sample Preparation	 CAC/GL 41-1993. Portion of Commodities to which MRL Apply and which is Analyzed
Sample Analysis	• CAC/GL 90-2017. <i>Guidelines on Performance Criteria for Methods of Analysis for Determination of Pesticide Residues in Food and Feed</i>
Data Evaluation	 EU:SANTE 11312/2021 CAC/GL 56-2005. Guidelines on the Use of Mass Spectrometry (MS) for Identification, Confirmation and Quantitative Determination of Residues
Reporting	CAC/GL 59-2006. Guidelines on Estimation of Measurement Uncertainty of Results


Pesticide analysis laboratory:

- > An essential part of a national food control system
- Verify the safety and quality of food (both domestically produced, imported and/or exported) to be able to protect the consumers.

provides support for food law enforcement, by providing scientific information needed for policy and decision making process related to food safety and quality.

Good Analytical Practice in Pesticide Residue Analysis

Codex CAC/GL 40-1993 (Rev.2003, Amend. 2010)

Codex CAC/GL 40-1993 (Rev. 2003. Amendment 2010

"Guidelines on Good Laboratory Practice In Pesticide Residue Analysis"

- Analyst
- Basic Resources (Laboratory)
- Analysis
 - ✓ Validation of methods
 - ✓ Performance Verification
 - ✓ Confirmatory tests
 - ✓ Mass spectrometry
 - ✓ Lowest calibrated level (LCL)
 - ✓ Expression of results

Codex CAC/GL 40-1993 (Rev. 2003. Amendment 2010 "Guidelines on Good Laboratory Practice In Pesticide Residue Analysis"

- Parameters to be addressed in
 - ✓ Method Validation

- ✓ Extension of validated method
- Adaptation of validated method by another laboratory
- ✓ Performance Verification
- Representation commodities/ samples for validation of analytical procedures

A. Analyst

- > Adequate number of Analysts with:
 - ✓ appropriate professional qualification
 - ✓ training and experience in operation of laboratory instruments
 - ✓ appropriate laboratory skills

A. Analyst

"Must" have experience and competent in pesticide residue analysis:

- Demonstrate that they can use the method within the expected performance parameters during method validation
- ✓ Have an understanding of the principles of pesticide residue analysis
- Have an understanding on the requirements of Analytical Quality Assurance systems
- ✓ Understand the purpose of each stage in the method
- Have *training* in the evaluation and interpretation of analytical results

B. Basic Resources

> Laboratory

- Iaboratory and facilities must be designed to allow tasks to be allocated to well defined areas where maximum safety and minimum chance of contamination of samples prevail.
- \checkmark there must be active separation of activities in the laboratory
- must be equipped with all laboratory safety and waste management provisions

B. Basic Resources

Equipment and Supplies

- ✓ laboratory will require adequate, reliable supplies of electricity and water
- ✓ there must be *adequate* supplies and *suitable quality* of reagents, solvents, glassware and chromatographic materials
- ✓ equipment used must be *fit for purpose*

✓ regular calibration and maintenance of all measuring equipment must be done and records must be kept up-to-date on file

B. Basic Resources

Equipment and Supplies

- Pesticide reference standards must be of known and acceptably high purity
- ✓ All analytical standards, stock solutions and reagents must be properly labelled
 - ✓ identity
 - ✓ analyst identification
 - \checkmark preparation date
 - ✓ solvent used
 - ✓ storage conditions

C. Analysis

- ⊖ Avoidance of Contamination
- Standard Operating Procedures (SOPs)
- → Validation of Methods
 →
- ⊖ Confirmatory Tests
- Mass Spectrometry
- ⇒ Derivatization
- → The Concept of Lowest Calibrated Level
- Expression of Results

Avoidance of Contamination

- Contamination and interferences are the critical areas in pesticide residue analysis
 - can give rise to false positive or false negative result or loss of sensitivity
- Possible sources of contamination:
 - Sampling
 - Sample transport and storage
 - Analyses
 - Chemical reagents

- Glassware, syringe and chromatographic columns

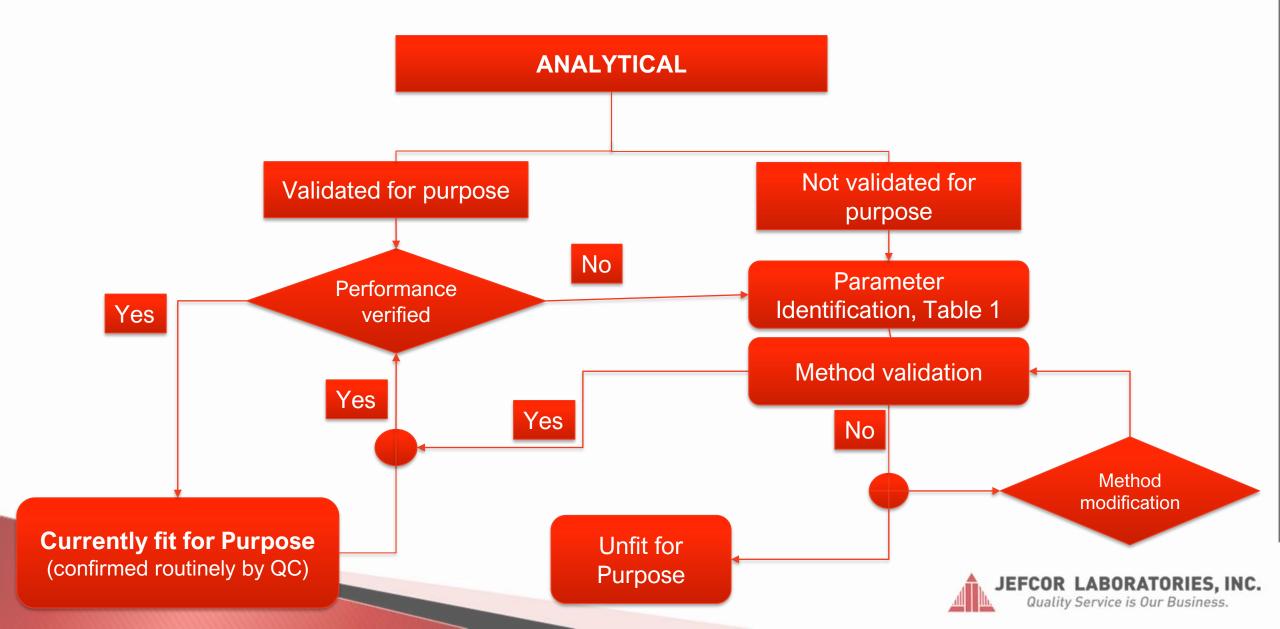
Reception and Storage of samples

- The laboratory shall have a procedure for the transportation, receipt, handling, protection, storage, retention, and disposal or return of test item.
 - Precautions shall be taken to avoid deterioration, contamination, loss or damage to the item.
- The laboratory shall have a system for identification of test item and shall be retained while the item is under the responsibility of the laboratory.
- Samples must be stored at (1-5°C) away from direct sunlight if it cannot be analyzed immediately
- > Samples received deep frozen must be kept at \leq -16°C until analysis
- Storage of samples for longer period of time require storage at approximately -20°C

Standard Operating Procedures (SOPs)

• **SOPs** should be used for all operations:

- full working instruction & information on applicability, expected performance, internal QC requirements and calculation of results
- information on any hazards arising from the method, from standards or form reagents


Validation of Methods

• Analytical method – is the series of procedures from receipt of sample to the production of final result.

• Validation is the process of verifying that a method is fit for intended purpose

METHOD VALIDATION WORKFLOW

Parameters to be assessed for method validation of new methods

- > Specificity
- Analytical range
- Calibration range
- LOD and LOQ
- Analyte stability in sample extracts
- Extraction efficiency
- > Homogeneity of analytical samples

Within Laboratory Method Validation Criteria for Analysis of Pesticide Residues

	Repea	tability	Reprod	ucibility	Trueness
Concentration	CV _A %	CV _L %	CV _A %	$CV_L\%$	Range of
					mean %
≤1 µg/kg	35	36	53	54	recovery 50-120
	30	32	45	46	60-120
> 1 µg/kg ≤ 0.01 mg/kg	30	JZ	45	40	00-120
> 0.01 mg/kg ≤ 0.1	20	22	32	34	70-120
mg/kg					
> 0.1 mg/kg ≤ 1 mg/kg	15	18	23	25	70-110
> 1 mg/kg	10	14	16	19	70-110
Table 3 of CAC/GL 40-1993.					

Representative commodities/samples for validation

of analytical procedure for pesticide residues

Commodit y Group	Common Properties	Commodity Class	Representative
I.	High water and chlorophyll content	Leafy vegetables, Brassica leafy vegetables, legume vegetables	spinach or lettuce broccoli, cabbage, kale
II,	High water, low to no chlorophyll content	Pome Fruits Stone Fruits Berries Small Fruits Fruiting Vegetables Root Vegetables	apple, pear, peach. cherry Strawberry, grape, tomato. bell pepper, melon Mushroom, potato, carrot, parsley
III,	High acid content	Citrus Fruits	Orange, lemon
IV.	High sugar content		Raisins, dates
V.	High oil or fat	Oil seeds Nuts	avocado, sunflower seed walnut, pecan nuts, pistachios
VI.	Dry Materials	Cereals Cereal Products	wheat. rice or maize grains wheat bran, wheat flour
	Commodities requiring individual test		garlic, hops, tea, spices, cranberry

Representative analyte *may* be used to assess the performance of a method

•The representative analyte(s) selected should:

✓ possess sufficiently wide range of physico-chemical properties
 ✓ regularly detected analyte or for which critical decisions will be made based on the results

•All analytes included in the initial validation process should be those which will have to be tested regularly and determined simultaneously

•The concentration of the analyte used to characterize a method should cover the high and low acceptable limits of all analytes in all commodities

Performance Verification

> Purpose:

- monitor the performance of the method under actual condition;
- consider the effect of analytical variations ;
- demonstrate that the performance characteristic of the method are similar to the established method validation, showing that method is under "statistical control";
- data obtained during method validation may be updated with data collected from performance verification during the regular use of the method

Parameters for Within Laboratory (single laboratory) performance of optimized method

- Analyte stability in extracts and standard solutions
- Calibration function ; Matrix effect
- > Analytical range
- Specificity and selectivity of analyte detection
- Selectivity of separation
- > Homogeneity of analyte in analytical sample
- Analyte stability during sample processing
- Extraction efficiency
- Analyte stability during sample storage

Parameters for extension of the validated method

- Analyte stability during sample storage, processing, and in extracts and standard solutions
- Calibration function, matrix effect
- Accuracy
- Specificity and selectivity of analyte detection
- Selectivity of separation
- Extraction efficiency

Parameters for adaptation of the validated method in another laboratory

- > Purity and suitability of chemicals, reagents and sorbents
- Analyte stability in extracts and standard solutions
- Calibration function; matrix effect
- Analytical range; accuracy and precision; limit of detection; limit of quantitation
- Specificity and selectivity of analyte detection
- Analyte "homogeneity"
- Analyte stability in extracts and standard solutions

Performance Verification

Use of Control Charts

- tool for demonstrating the performance of a method and the reproducibility of the selected parameters
- for a large number of the same type of sample for the analysis of the same active ingredient, the control chart is based on the mean recovery and its standard deviation obtained during the regular use of the method

Requirements for performance verification (*methods used regularly*)

- Suitability of chemicals, adsorbents and reagents
- Calibration and analytical range
- Accuracy and precision
- Selectivity of separation; Specificity of detection and performance of detectors
- Analyte homogeneity in processed sample
- Extraction efficiency
- Duration of analysis

Confirmatory Tests

Use of Control Charts

- tool for demonstrating the performance of a method and the reproducibility of the selected parameters
- for a large number of the same type of sample for the analysis of the same active ingredient, the control chart is based on the mean recovery and its standard deviation obtained during the regular use of the method
- control charts cannot be applied for multiresidue analysis

Mass Spectrometry

- confirmatory technique for residue analysis
- can also be used for residue screening purposes
- the most definitive confirmation of the presence of a residue is the acquisition of its "complete" electron-impact ionization mass spectrum
- the relative abundance of ions in the spectrum and the absence of interfering ions are important consideration in confirming identity

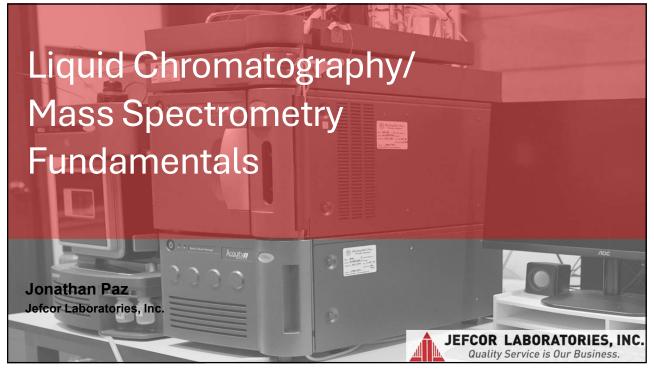
The Concept of Lowest Calibrated Level (LCL)

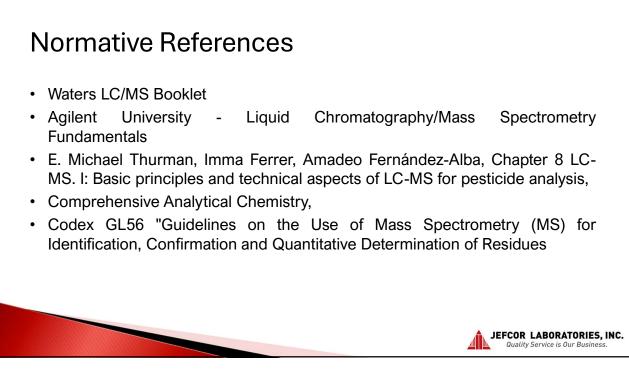
• For MRLs or other Accepted Limits (ALs) compliance

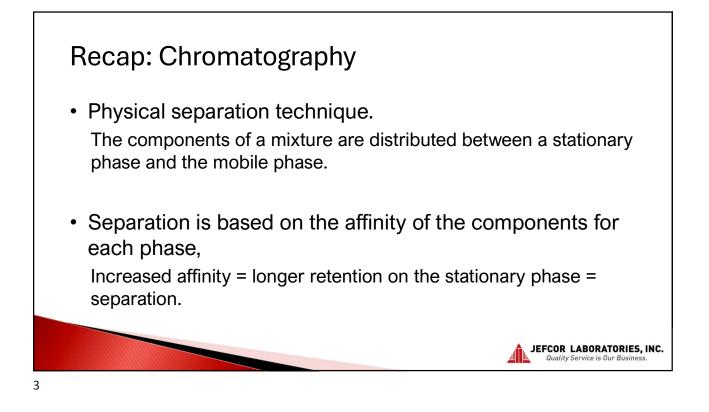
- the residue methods must be sufficiently sensitive to reliably determine the residues present in a sample at or around MRL or AL
- it is not necessary to use methods to determine residues at levels two or more orders of magnitude lower, due to very high cost
- When the MRL is set at the limit of determination of the analytical method, the LCL will also be at this level

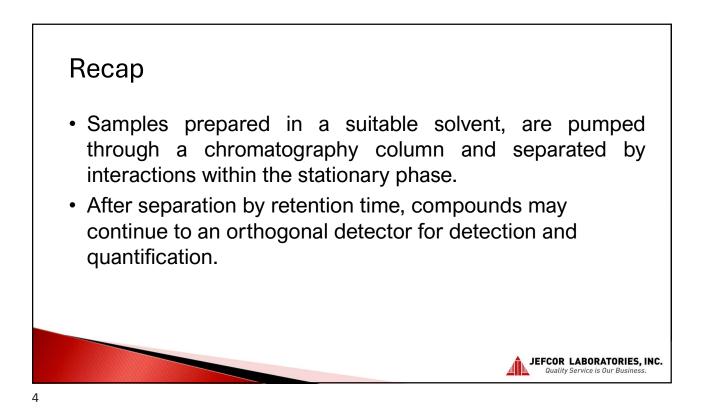
Setting the Lowest Calibrated Level

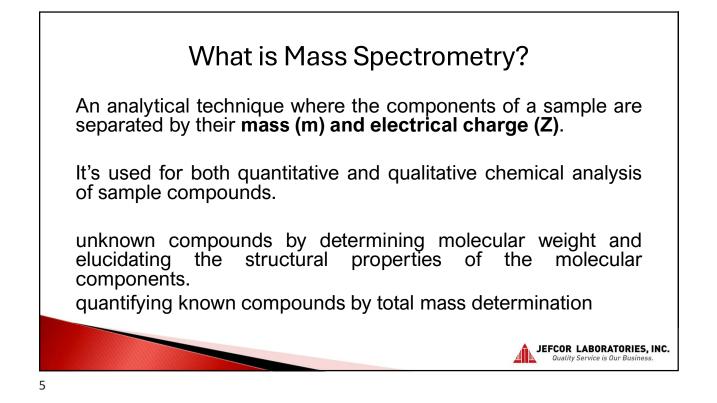
MRL (mg/kg)	LCL (mg/kg)
5 or greater	0.5
0.5 up to 5	0.5
0.05 up to 0.5	0.02 increasing to 0.1 for MRLs
Less than 0.05	0.5 x MRL

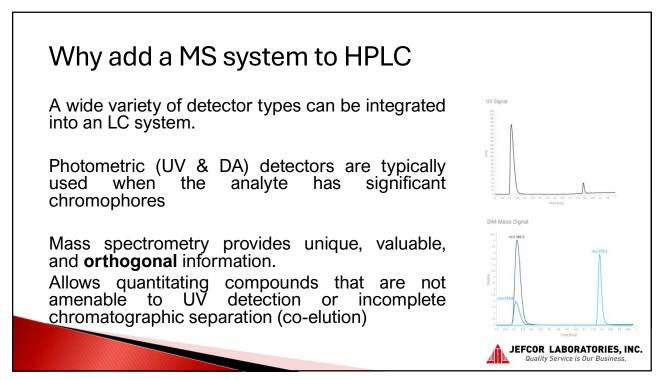

Expression of Results

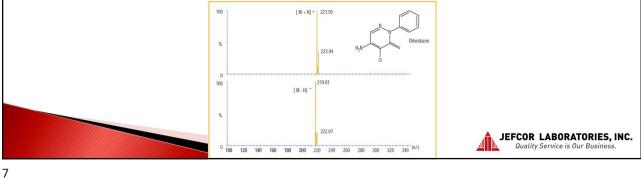

 only confirmed data should be reported, expressed as defined by MRL

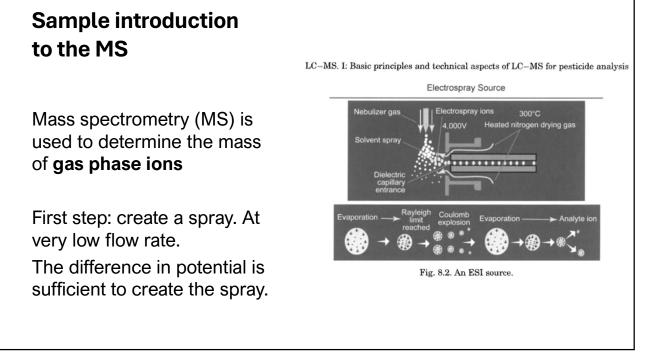

 null values should be reported as being less than the lowest calibrated level

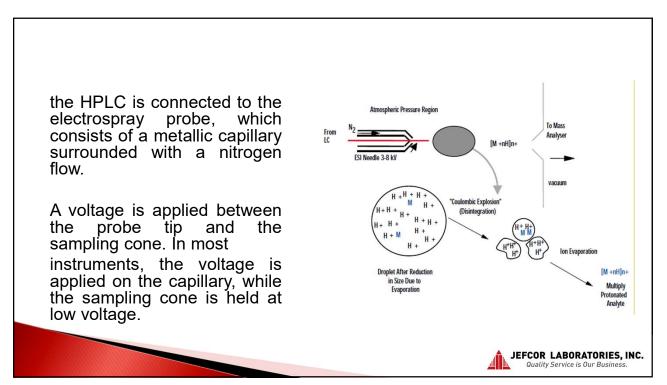

• results are not corrected for recovery, and they may only be corrected if the recovery is significantly different from 100%

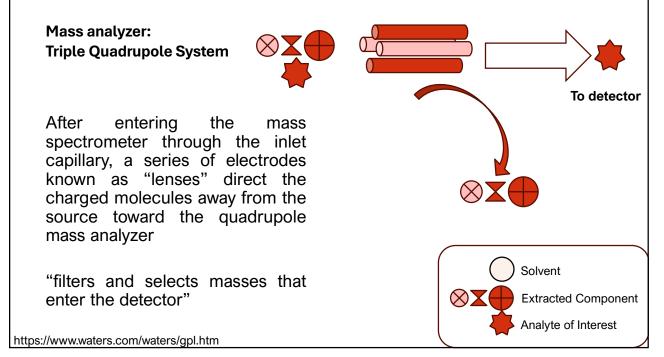


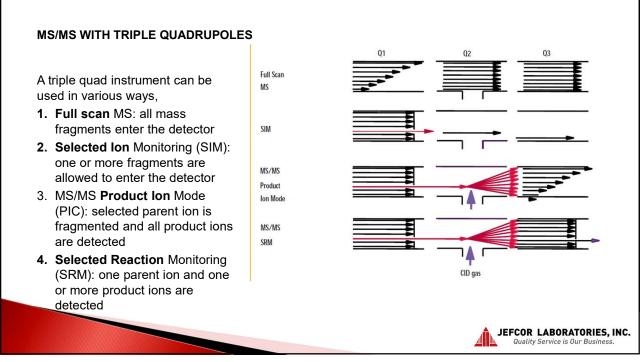


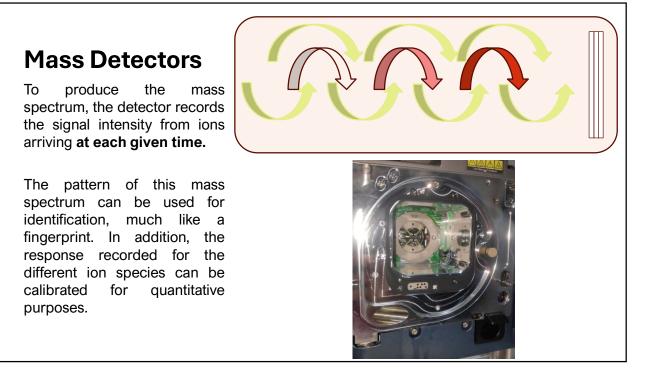


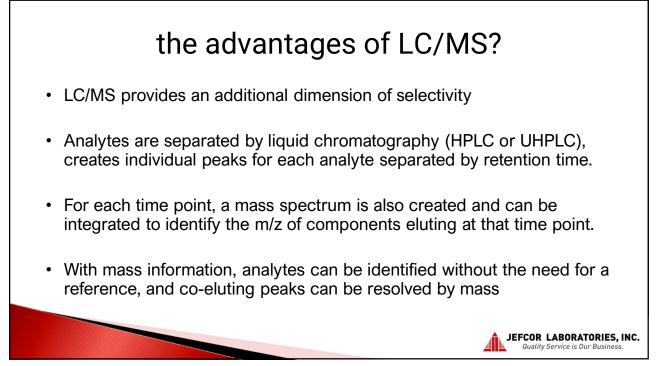


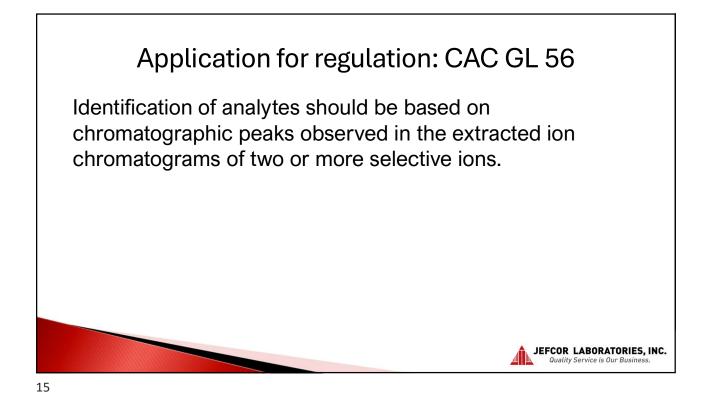

Mass Spectrometry Instrumentation

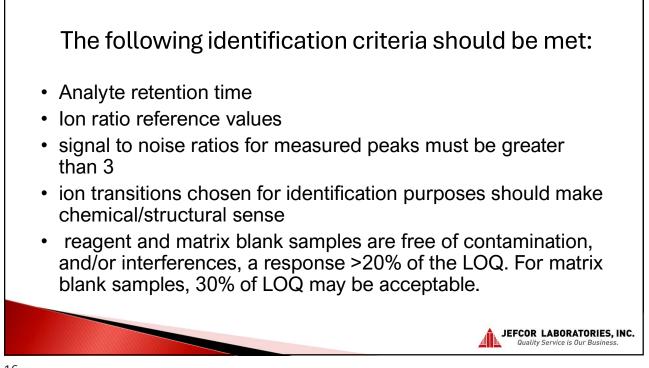

Mass spectrometers operate by converting the analyte molecules to a charged (ionized) state, with subsequent analysis of the ions and any fragment ions that are produced during the ionization process, on the basis of their mass to charge ratio (m/z).

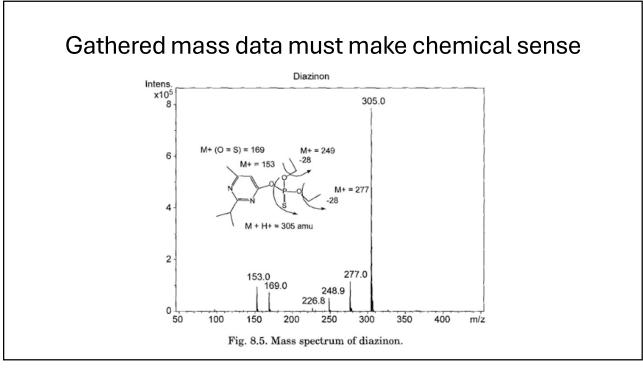


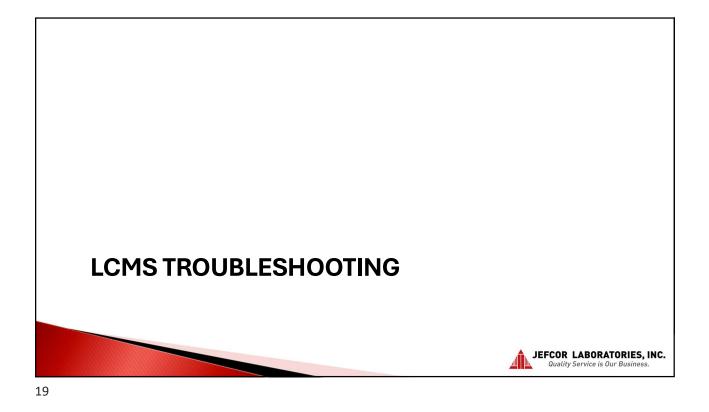

Components of a LC-MS Inlet System lon Inlet system: introduces a small source amount of sample into the ion source with minimal loss of vacuum. Column Holder / lon source: It is the heart of the Oven mass spectrometer. It is where the sample is ionized Autosampler 000 Mass analyzer: It is responsible for taking the ionized masses and sorting them according to their Pump mass-to-charge ratio (m/z). Detector: converts the sorted ionized masses to quantifiable data. Mass **Detector** analyzer JEFCOR LABORATORIES, INC. Quality Service is Our Busine

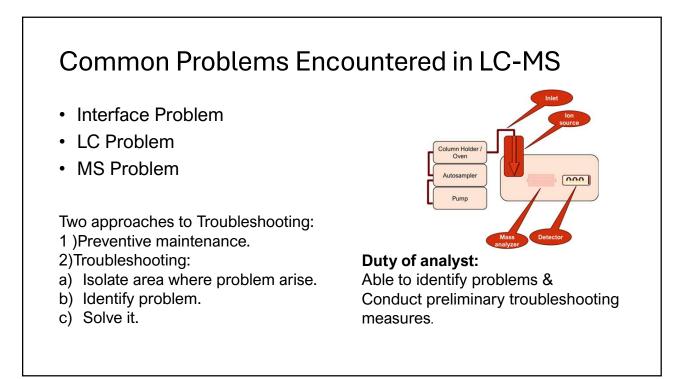


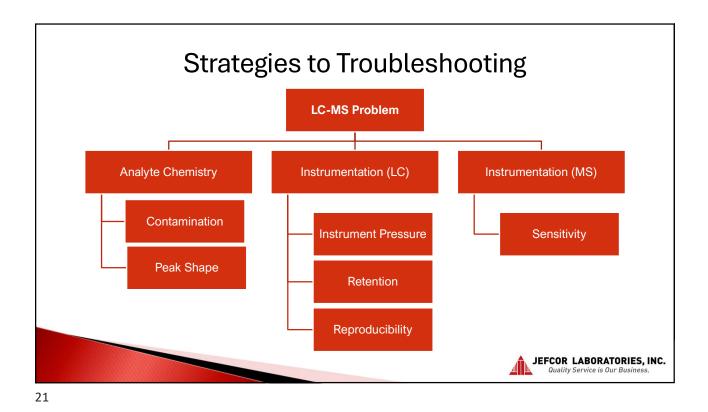


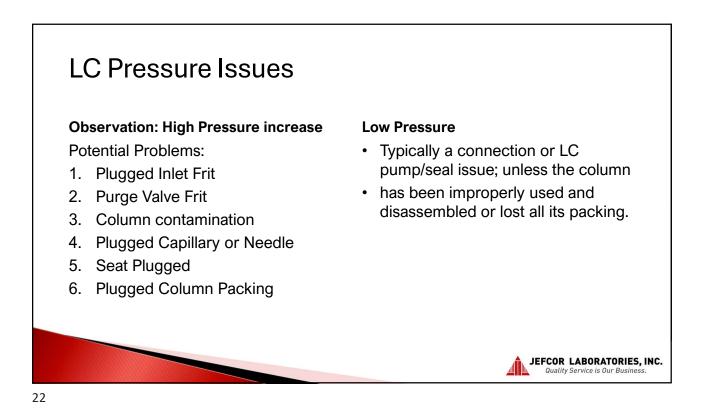


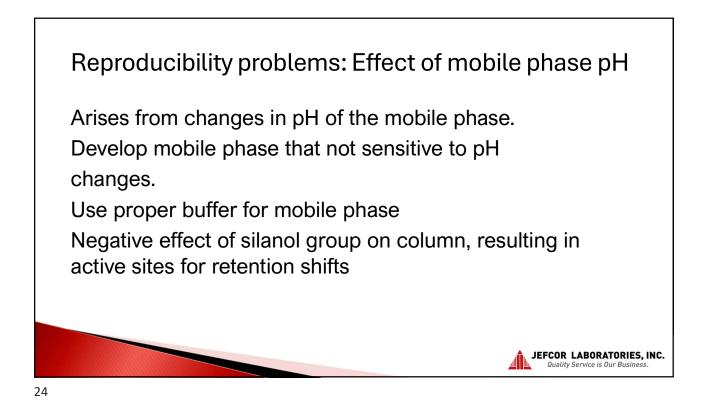


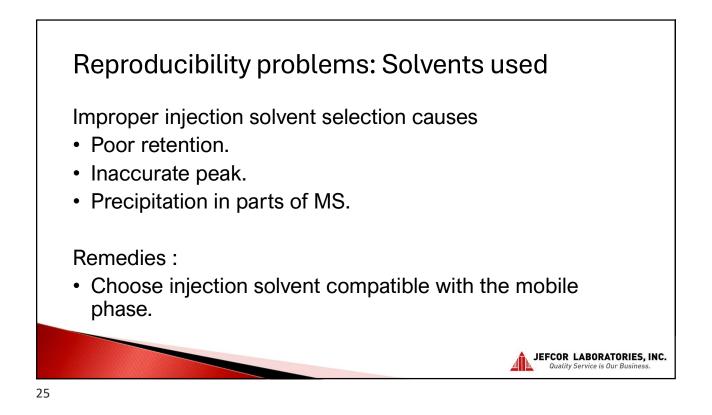


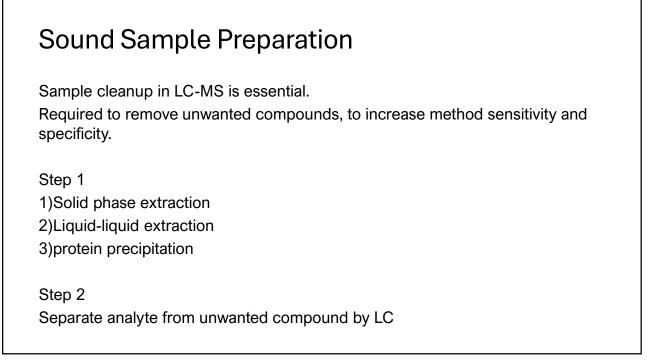


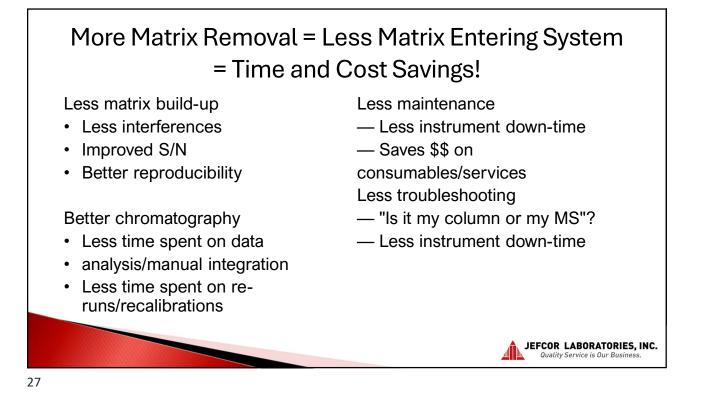


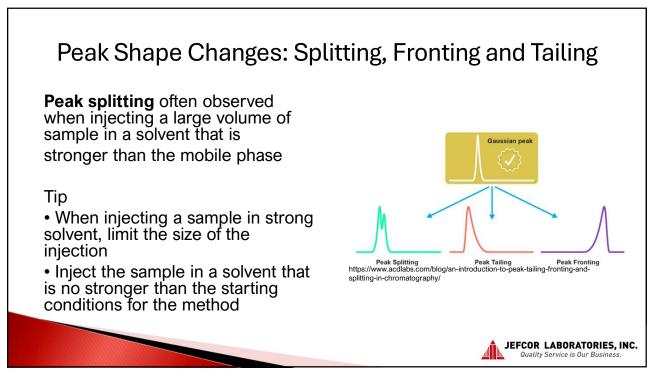

MS detector/Characteristics			Requirement	for identification	
Resolution	Typical systems (examples)	Acquisition	minimum number of ions	additionally	
	Single MS Quadrupole, ion trap, TOF	Full scan, limited m/z range, SIM	3 ions	S/N≥3ª Analyte peaks from both product ions in the extracted ion chromatograms must	
Tripl	MS/MS Triple quadrupole, ion trap, Q-trap, Q-TOF, Q-Orbitrap	Selected or multiple reaction monitoring (SRM, MRM), mass resolution for precursor-ion isolation equal to or better than unit mass resolution	2 product ions	fully overlap. Ion ratio from sample extracts should be within ±30 % (relative) of average of calibration standards from same sequence	
Accurate mass measurement	High resolution MS: (Q-)TOF (Q-)Orbitrap	Full scan, limited m/z range, SIM, fragmentation with or without precursor-ion selection, or combinations thereof	2 ions with mass accuracy ≤ 5 ppm ^{a, b, c)}	S/N ≥ 34 Analyte peaks from precursor and/or product ion(s) in the extracted ion chromatograms must fully overlap.	
	t least one fragment is	ar ion, (de)protonated molecule or on	adduct ion	Ion ratio: see D12	BORATORIES, I

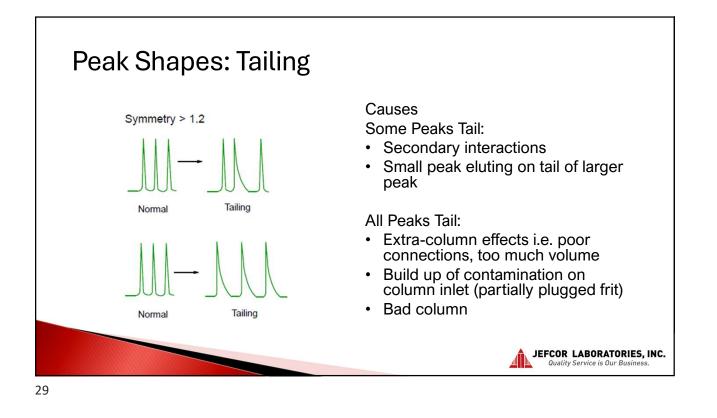


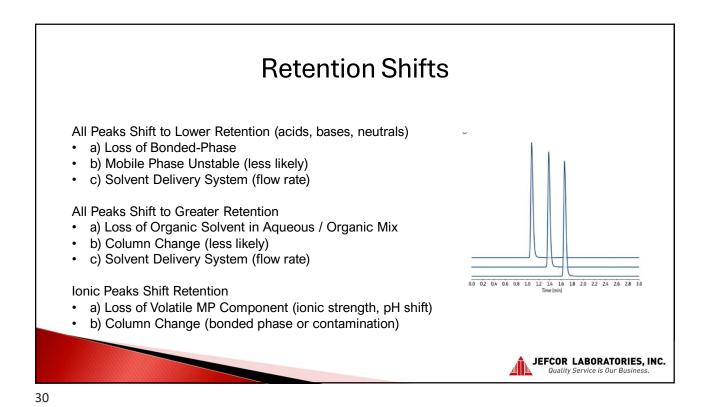

Preventing Column Pressure Problems

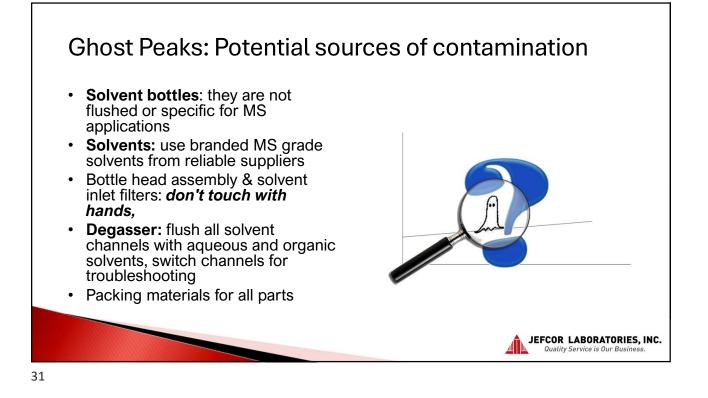

- 1. Filter mobile phase:
 - filter non-HPLC grade solvents
 - filter buffer solutions
- 2. Filter all samples and standards
- 3. In-line filters
 - Install an in-line filter between auto-sampler and column
- 4. Perform sample clean-up on dirty samples.


5. Appropriate column flushing — flush buffers from entire system with water/organic mobile phase


6. Replace buffers every 24-48 hours, never add to the bottle, to avoid microbial growth







PESTICIDE RESIDUE ANALYSIS USING MODULAR **QuEChERS** - BS EN 15662:2018

clean-up by dispersive SPE - Modular QuEChERS-method"

"Foods of plant origin - Multimethod for the determination of pesticide residues using GC- and LC-based analysis following acetonitrile extraction/partitioning and

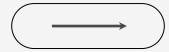
Pesticide Analytical Laboratory Section

Plant Product Safety Services Division Bureau of Plant Industry Quezon City, metro manila, philippines

ASEAN JICA Food Value Chain Development Project 01/2025

> I.Gaza PESTICIDE RESIDUE UNIT

What is QuEChERS?


January,2025

ASEAN JICA Food Value Chain Development Project

What is **QuEChERS?**

January,2025

Sample Preparation Technique

Pesticide Residue Analysis

ASEAN JICA Food Value Chain Development Project

Sodium acetate buffer AOAC standard compliance Focus on AOAC-related foods Harmonized in AOAC

Original QuEChERS

Anastassiades et al. in 2003

EXTRACTION

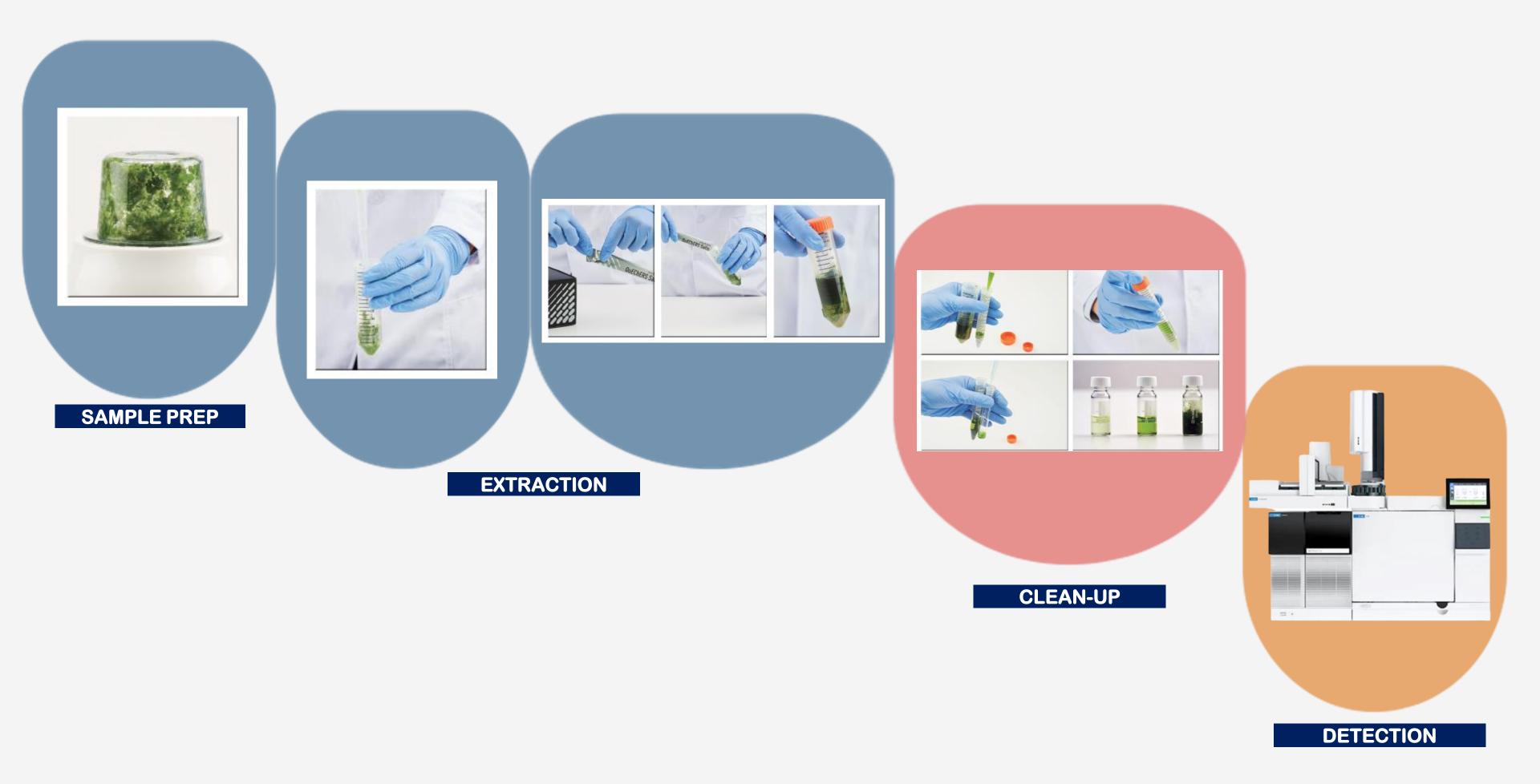
ACETONITRILE


No buffer Flexible compliance General food Limited for pH-sensitive Not standardized

January,2025

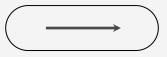
AOAC Method

Association of Official Analytical Chemists **CLEAN-UP**


dSPE

CEN Method

European Committee for Standardization


Sodium citrate buffers EU regulatory compliance Emphasis on European foods Better for pH-sensitive Harmonized in EU

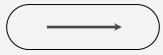
Acetonitrile extraction/partitioning and clean-up by dispersive SPE -Modular QuEChERS-method

January,2025

BS EN 15662:<u>2018</u>

Acetonitrile extraction/partitioning and clean-up by dispersive SPE -Modular QuEChERS-method

 $\underbrace{\longrightarrow}$


January,2025

BS EN 15662:2018 is a European standard for determining pesticide residues in food and feed, detailing a modified QuEChERS method for multiresidue analysis of various matrices of plant origin.

Widely used in analytical laboratories for regulatory compliance and quality assurance.

Acetonitrile extraction/partitioning and clean-up by dispersive SPE -**Modular QuEChERS-method**

- Fruits and vegetables (e.g., apples, tomatoes, leafy greens)
- Cereals and cereal-based products
- **Processed foods of plant origin** (e.g., juices, jams)

 Wide range of pesticide residues, including organochlorines, organophosphates, carbamates, and pyrethroids

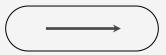
Applicable to both non-polar and polar compounds • Targets multiresidue analysis with GC-MS and LC-**MS** detection

IMPORTANCE

ENSURES FOOD SAFETY

Consumer Protection and Harmonized Limits

- Identifies and quantifies pesticide residues in food to ensure they are within permissible limits.


- Supports compliance with Maximum Residue Limits (MRLs) set by regulatory agencies like the EU and WHO.

METHOD STANDARDIZATION and STRAIGHTFORWARD APPROACH

Standardized Methodology and Quality Assurance

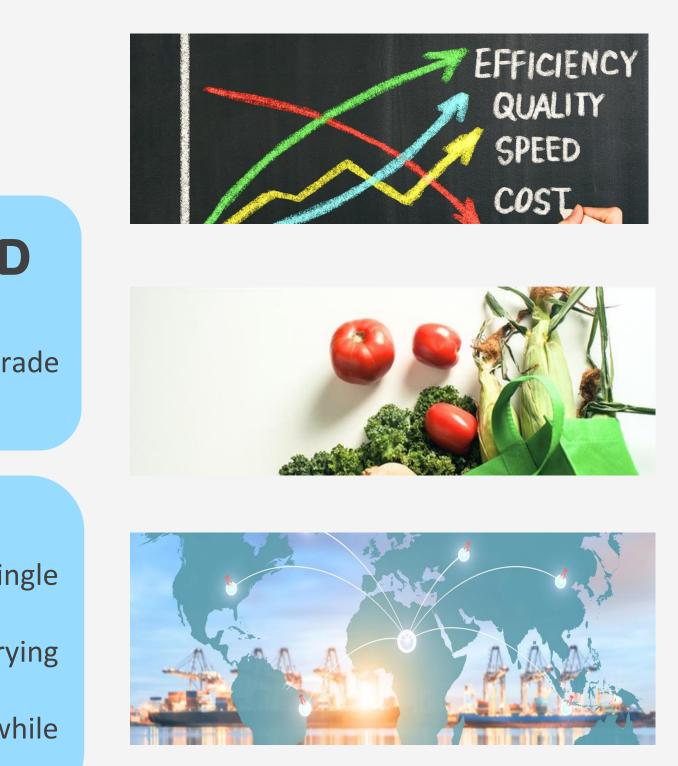
- Provides a consistent and reliable approach for pesticide residue analysis, accepted globally.

- Simple and straightforward method approach.

IMPORTANCE

COMPLANCE WITH LEGAL REQUIREMENTS AND PROMOTION OF GLOBAL TRADE

-Ensures food producers and exporters meet strict pesticide regulations, avoiding trade barriers.


ANALYTICAL EFFICIENCY

-Multi-Residue Analysis: Capable of detecting a wide range of pesticides in a single analysis, saving time and resources.

-Versatility: Modular design allows adjustments for different food matrices and varying pesticides.

- Cost-Effective: Reduces the need for expensive equipment or complex methods while delivering reliable results.

BS EN 15662:2018 MODULES in FOCUS

Extraction Modules (E1-E9)

These modules outline the procedures for extracting residues from various food matrices.

- **E1** General purpose module for high-water content plant material (Fruits and Vegetables, Juices)
- **E2** pH-sensitive matrices requiring buffer salt to stabilize analytes (Lemon, Limes)
- E3 Plant material of intermediate water content, and where pH control is unnecessary (Bananas, Dates)
- **E4** Plant material with low water content (Dried fruits)
- **E5** Plant material with very low water content (Grains, Honey)
- **E6** Plant material with intermediate water content and high oil content (Garlic, Onion)
- **E7** Plant material with very low water content and high matrix load, also used for freeze-dried products(Spices, Coffee)
- **E8** Extraction for determining acidic pesticides, Plant material and edibles with neutral or acidic pH and high water content
- **E9** Extraction for determining acidic pesticides, Plant material and edibles with low water content

BS EN 15662:2018 MODULES in FOCUS

Clean-up Modules (C0-C5)

- **CO** NO CLEAN-UP, Plant materials with low matrix load, determination of base sensitive and acidic pesticides **C1** – FREEZING-OUT, clean-up used to reduce fat in extracts of high fat/oil content by freezing out and precipitation of fats
- overnight
- **C2** dSPE with PSA, clean-up used for determining neutral and alkaline pesticides, this is the standard cleanup for commodities not specified
- **C3** dSPE WITH a.) 50 mg PSA /mL extract, or b.) 75 mg PSA /mL extract, clean-up for plant material with low water content **C4** – dSPE WITH PSA and C18, simultaneous clean-up of raw extracts and removal of co-extracted fat **C5** – dSPE WITH PSA and GCB, clean-up used for determining neutral and alkaline pesticides in highly pigmented extracts.

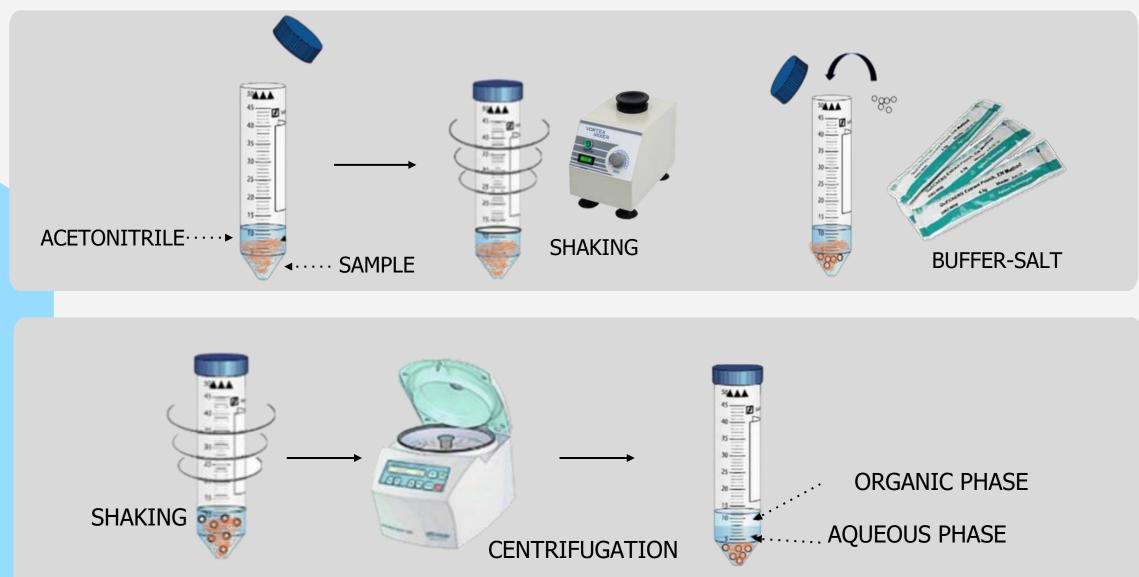
BS EN 15662:2018 MODULES in FOCUS

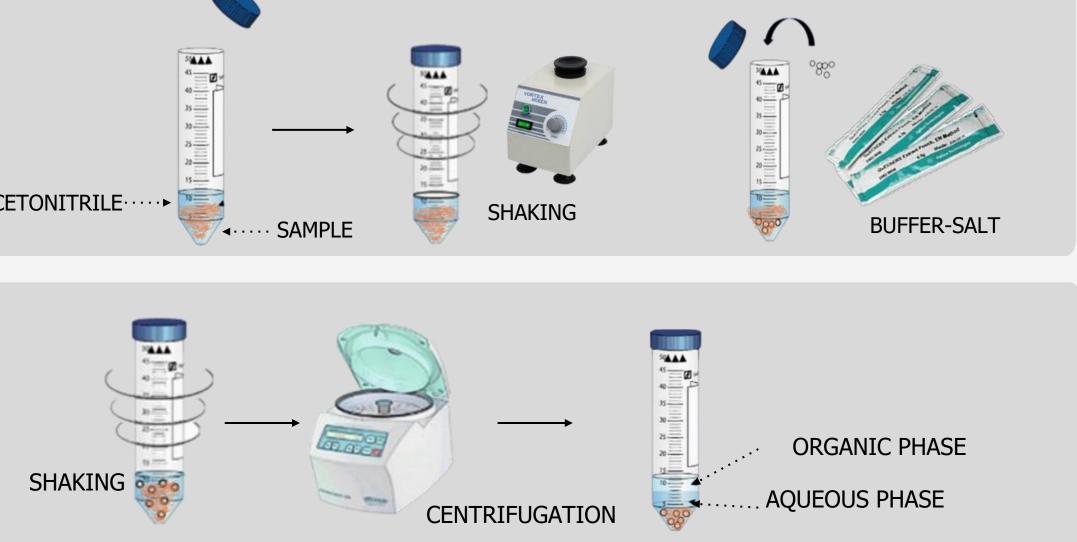
Stabilization Modules (S0-S1)

SO – No Stabilization, use if acid-labile pesticides are to be determined **S1** – Stabilization with formic acid, use if acid-stable pesticides are to be determined

acetonitrile is added.

This ensures the chemical stability of sensitive analytes.


QuEChERS



For every 1 mL of extract, 10 µL of 5% formic acid in

METHOD (E1-C2)

- 1. SAMPLE PREPARATION, EXTRACTION, PARTITIONING (E1)
- Weigh 10g (±0.1g) of homogenized sample into a 50 mL centrifuge tube.
- Add 10 mL of Acetonitrile to the sample +
- Shake sample using a vortex, 1-3mins for room temperature sample or 15 mins for frozen samples
- Add prepared buffer-salt mixture (EN salt)* to the suspension and immediately shake vigorously (second extraction)
- *Centrifuge for 5 mins at 4500rpm.*

January,2025

QuEChERS

*4g of anhydrous magnesium sulfate, 1g sodium chloride, 1g of trisodium citrate dihydrate and 0.5 g of disodium hydrogen citrate sesquihydrate – Agilent Part Number:5982-5650,

AMBIENT TEMPERATURE

1 TO 3 MINUTES SHAKING

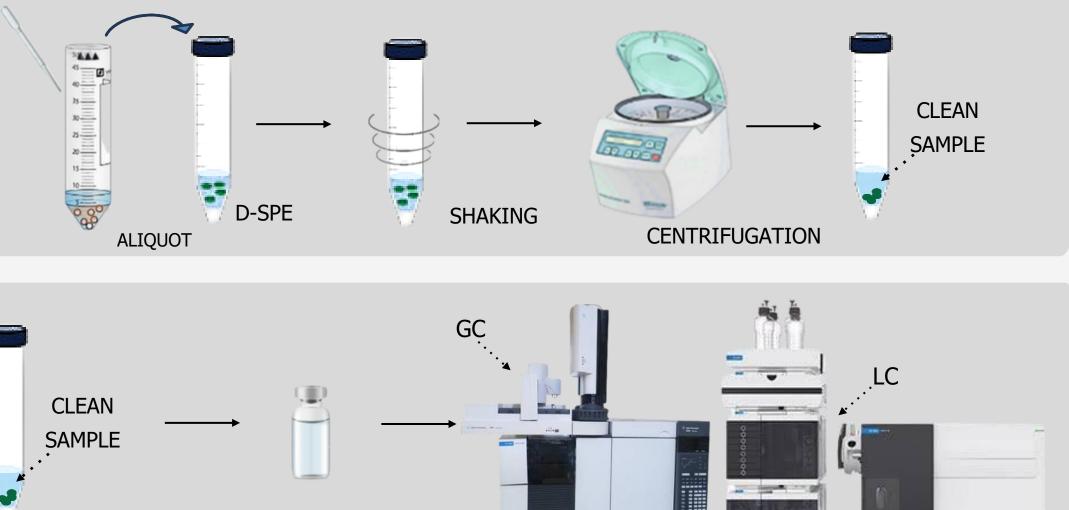
January,2025

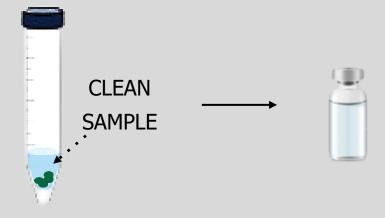
QuEChERS

FROZEN STATE

15 MINUTES SHAKING

ASEAN JICA Food Value Chain Development Project


METHOD (E1-C2)


2. SAMPLE CLEAN-UP (C2)

- Aliquot 6 mL of Acetonitrile extract, transfer to dSPE tube with amine sorbent (150 mg PSA, 900 mg of magnesium sulfate)
- Shake sample vigorously for 30 s using a vortex.
- *Centrifuge for 5 mins at 4500rpm.*

Acidify using module S1 if necessary

- Inject to GC or LC

January,2025

CLEAN-UP

ADSORBENTS USED IN STANDARD

Primary Seconday Amine (PSA)

- Fatty acids
- Organic acids
- Sugars
- Polar pigments
- (e.g., anthocyanins)

C18 (Octadecyl Silica)

- Non-polar interferences
- Lipids
- Waxes

Magnesium Sulfate (MgSO₄)

Removes residual water by dehydration

Graphitized Carbon Black (GCB)

• Pigments

(e.g., chlorophyll, carotenoids)

• Sterols

*May adsorb some planar analytes like certain pesticides (e.g., thiabendazole, chlorothalonil).

EXTRACTION - WITHOUT HYDROLYSIS

MODULE	DESCRIPTION	PREFFERED APPLICATION	EXAMPLES
E1	A test portion of 10 g without any addition of water is extracted with 10ml acetonitrile	Plant material and edibles with high water content $(\geq 80 \%)$	Fruit, vegetables, juices
E2 (E2a or E2b)	10 g test portion is extracted by 10 ml acetonitrile with addition of E2a) 0.6 ml or E2b) 0.2 ml sodium hydroxide solution	Plant material and edibles with high water content $(\geq 80 \%)$ and high acid content	Lemons, lime, red currant raspberry, blackberry
E3 (E2a or E2b)	E3a) 2.5 ml or E3b) 4.5 ml of water is added to a test portion of 10 g and then extracted with 10ml acetonitrile	Plant material and edibles with intermediate water content (> 40 % and < 80 %)	Bananas, root and tuber vegetables (potatoes, yam, parsnip), fresh dates, chestnuts
E4	Test sample is homogenized with water and a test portion of 13.5 g of the homogenate is extracted with 10ml acetonitrile.	Plant material and edibles with low water content (15 % to 40 %)	Dried fruit und similar commodities
E5	A test portion of 5 g is completed with 10 ml of water and then extracted with acetonitrile, 15mins shaking time or soaking time	Plant material and edibles with very low water content (<15 %) and honey	Cereal grain, Creal grain products, Honey
E6	A test portion of 5 g is completed with 6 ml of water and then extracted with acetonitrile.	Plant material and edibles with intermediate water content (>40 % to 80 %) and high matrix load or high oil content (>5 %)	Garlic, avocados
E7	A test portion of 2 g is completed with 10 ml of water and then extracted with acetonitrile, 15mins shaking time or soaking time	Plant material and edibles with very low water content (<15 %) and high matrix load as well as freeze-dried products	Spices, coffee, tobacco, tea, lentils, freeze-dried fruit

RESIDUE DEFINITON

A pesticide residue is any specified substance in food, agricultural commodities, or animal feed resulting from the use of a pesticide. In general, residue definition includes all or a combination of the following, parent compound, derivatives of the pesticide, such as conversion products, metabolites, reaction products, and other related impurities.

For each pesticide used on food or feed commodities, regulatory authorities need to choose which residue(s) will be used for dietary risk assessment and setting MRLs. Residue definitions are set by JMPR (Joint Meeting on Pesticide Residues) and other major registrars.

a. For example is, "CARBOFURAN", a carbamate insecticide Parent compound: Carbofuran | Metabolites included: 3-hydroxycarbofuran The residue definition for it's MRL setting is the sum of carbofuran and 3-hydroxycarbofuran, expressed as Carbofuran

b. "HALOXYFOP", an herbicide, In the context for compliance with MRLs set by the CODEX Alimentarius, The residue definition is the sum of Haloxyfop (including haloxyfop-P), its esters and its conjugates expressed as Haloxyfop (Reference: Codex Alimentarius pesticide database)

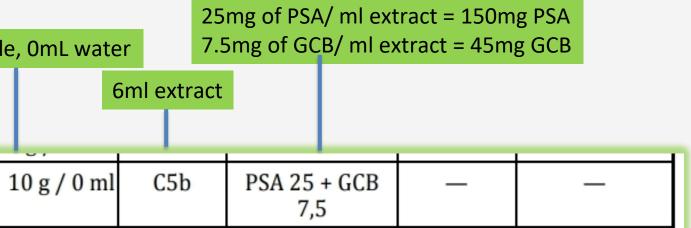
Other information IMPR-related information

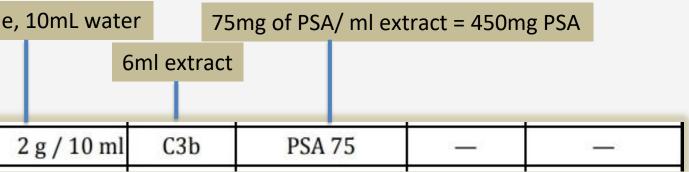
ADI/PTDI: Residue definition: 0-0.0007 mg/kg bw -2006 For compliance with the MRL and for estimation of dietary intake for plant and animal commodities: Sum of haloxyfop (including haloxyfop-P), its esters and its conjugates expressed as haloxyfop.

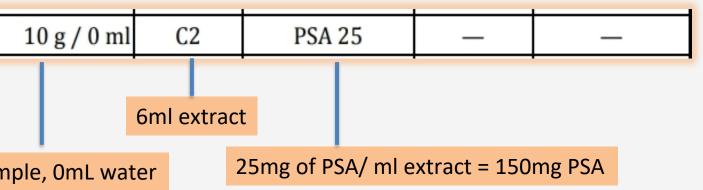
ASEAN JICA Food Value Chain Development Project

Back

MODULE	DESCRIPTION	PREFFERED APPLICATION	EXAMPLES
E8	Hydrolysis of esters and conjugates of acidic pesticides in the slurry of 10 g sample in acetonitrile followed by extraction with acetonitrile (2ml or 1ml of 5M Sodium Hydroxide, 1.4ml or 1ml of 2.5M sulfuric acid)	Plant material and edibles with neutral or acidic pH and high water content (≥80 %)	Fruit and vegetables, Juices
E9	Hydrolysis of esters and conjugates of acidic pesticides in the slurry of 2 g to 5 g sample in acetonitrile followed by extraction with acetonitrile (1ml of 5M Sodium Hydroxide)	Plant material and edibles with low water content	Cereal grain, cereal grain prodcuts, garlic, spices, coffee, tobacco, tea, lentils, freeze-dried fruit


CLEAN-UP MODULES


MODULE	DESCRIPTION	PREFFERED APPLICATION	EXAMPLES
CO	No clean-up	Base-sensitive and acidic pesticides (pKa < 5) that interact with the aminosorbent (PSA) used in modules C2 to C5, analysis of extracts with low matrix-load	Cucumber, apples, sufficiently diluted rawextracts
C1	 8mL from E2,E5, or E6, stored in freezer overnight 6ml cold extract to C2, C3, or C5 	Removal of co-extracted fat by freezing (can be used in combination with further clean- up steps, e.g. C2, C3, C5)	Oranges, lemons, cereal grain
C2	 - 6mL from E1-E4 or E6 - Dispersive SPE with 150mg PSA/900mg Magnesium Sulfate *25mg PSA /mL extract, 150mg Magnesium Sulfate/mL extract 	Clean-up of raw-extracts prior to the determination of basic and neutral pesticides	Standard-procedure for any commodity not shown separately
C3	 - 6mL from E5, E7 - Dispersive SPE with a larger amount of amino sorbent C3a (50mg PSA/mL Extract) = 300mg PSA/900mg Magnesium Sulfate C3b (75mg PSA/mL extract) = 450mg PSA/900mg Magnesium Sulfate 	Clean-up of raw-extracts of foods of plant origin with high matrix-load prior to the determination of basic and neutral pesticides	Raw-extracts from modules E5 (e.g. cereal grain and products thereof) and E7 (e.g. coffee, tea, dried herbs, spices)
C4	- 6mL from E2,E5,E6 Dispersive SPE with 150mgPSA/150mg C18/900mg Magnesium Sulfate	Simultaneous clean-up of raw extracts and removal of coextracted fat	Citrus fruit, cereal grain and products thereof, avocados, olives
C5	 - 6mL from E1 or E7 - Dispersive SPE with a mixture of amino-sorbent and graphitized carbon black C5a 2.5mg GCB/mL Extract = 15mg GCB/900mg Magnesium Sulfate C5b 7.5mg GCB/mL Extract = 45mg GCB/900mg Magnesium Sulfate 	Clean-up of intensely coloured raw-extracts prior to the determination of basic and neutral pesticides	Iceberg lettuce, head lettuce, rocket salad


Examples of modular combinations

Commodity	Extraction (E)	Description (E) ^a	Clean-up (C)	Description (C) ^b	Clean-up (C altern.)	Description (C altern.) ^b				
Rocket	E1	10 g / 0 ml	C5b	PSA 25 + GCB 7,5	-	—				
Romaine lettuce	E1	10 g / 0 ml	C5a	PSA 25 + GCB 2,5	—	—				
Rosemary (68 % water)	E6	5 g / 6 ml	C2	PSA 25	_	—			1	LO g sample
Rosemary, fresh	E3a	10 g / 2,5 ml	C2	PSA 25	_	—			_	U .
Sage, fresh	E6	5 g / 6 ml	C2	PSA 25	—	_				
Sage, fresh	E3a	10 g / 2,5 ml	C5b	PSA 25 + GCB 7,5	—	—				
Salsifies	E1	10 g / 0 ml	C2	PSA 25	_	—		r ·		
Savoy cabbage	E1	10 g / 0 ml	C2	PSA 25	_	_		Spinachas	F1	-
Shallots	E1	10 g / 0 ml	C2	PSA 25	—	—		Spinaches	E1	-
Shallots, freeze-dried	E7	2 g / 10 ml	C2	PSA 25	_	—				
Spearmint	E1	10 g / 0 ml	C5b	PSA 25 + GCB 7,5	—	—				
Spices	E7	2 g / 10 ml	C2	PSA 25	_	—				
Spinaches	E1	10 g / 0 ml	C5b	PSA 25 + GCB 7,5	-	_ /				2 g sample
Strawberries	E1	10 g / 0 ml	C2	PSA 25	-	—				2 8 sumple
Strawberries, freeze- dried	E7	2 g / 10 ml	C2	PSA 25	C3a	PSA 50				
Sweet potatoes	E3a	10 g / 2,5 ml	C2	PSA 25	—	—				
Tamarind (31 % water)	E4	500 g / 850 ml	C2	PSA 25	_	—			•	
Taro/eddoe	E3a	10 g / 2,5 ml	C2	PSA 25	-	—		Теа	E7	2
Теа	E7	2 g / 10 ml	C3b	PSA 75	—			ica	L/	
Thyme, dried	E7	2 g / 10 ml	C2	PSA 25	C5b	PSA 25 + GCB 7,5	L 1			
Thyme, fresh	E3a	10 g / 2,5 ml	C5b	PSA 25 + GCB 7,5	-	—				
Thyme, fresh (65 % water)	E6	5 g / 6 ml	C2	PSA 25	—	—		Tomatoes	E1	
Tomatoes	E1	10 g / 0 ml	C2	PSA 25	_		-		•	
Tomatoes, dried (14,5 % water)	E4	500 g / 850 ml	C2	PSA 25	-	—				
Vegetables	E1	10 g / 0 ml	C2	PSA 25	—	—		Cucumber, Cabbage, Broco	coli,	
Vicia faba (with pods)	E3a	10 g / 2,5 ml	C2	PSA 25	—	_		has similar E-C combinatio	ns	
Wheat sprouts (47 % water)	E3b	10 g / 4,5 ml	C2	PSA 25	-	—				10 g samp
Wine	E1	10 g / 0 ml	C2	PSA 25	—	—				
Yams	E3a	10 g / 2,5 ml	C2	PSA 25	_	_				

January,2025

HANDS-ON ACTIVITY Analysis of Rice using using modular QuEChERS and laboratory developed method

Pesticide Analytical Laboratory Section

Plant Product Safety Services Division Bureau of Plant Industry Quezon City, metro manila, philippines

ASEAN JICA Food Value Chain Development Project

01/2025

Michael Alava

Ench Gaza Jay Valeza PESTICIDE RESIDUE UNIT

ACTIVITIES

Sample Processing

- Grinding of rice
- weighing of test portion

Standard preparation

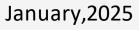
MATRIX-MATCH, FOR LABORATORY DEVELOPED METHOD

- 5ppm
- 1ppm
- 0.10ppm
- 0.05ppm
- 0.02ppm
- 0.01ppm
- 0.005ppm

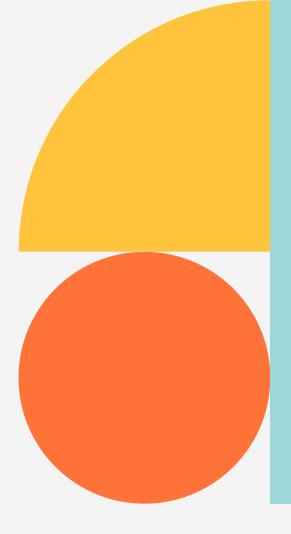
Reagent preparation

• 3:1 Acetonitrile: Toluene

Analysis


Rice analysis using Modular QuEChERS
 method for GC

Analysis

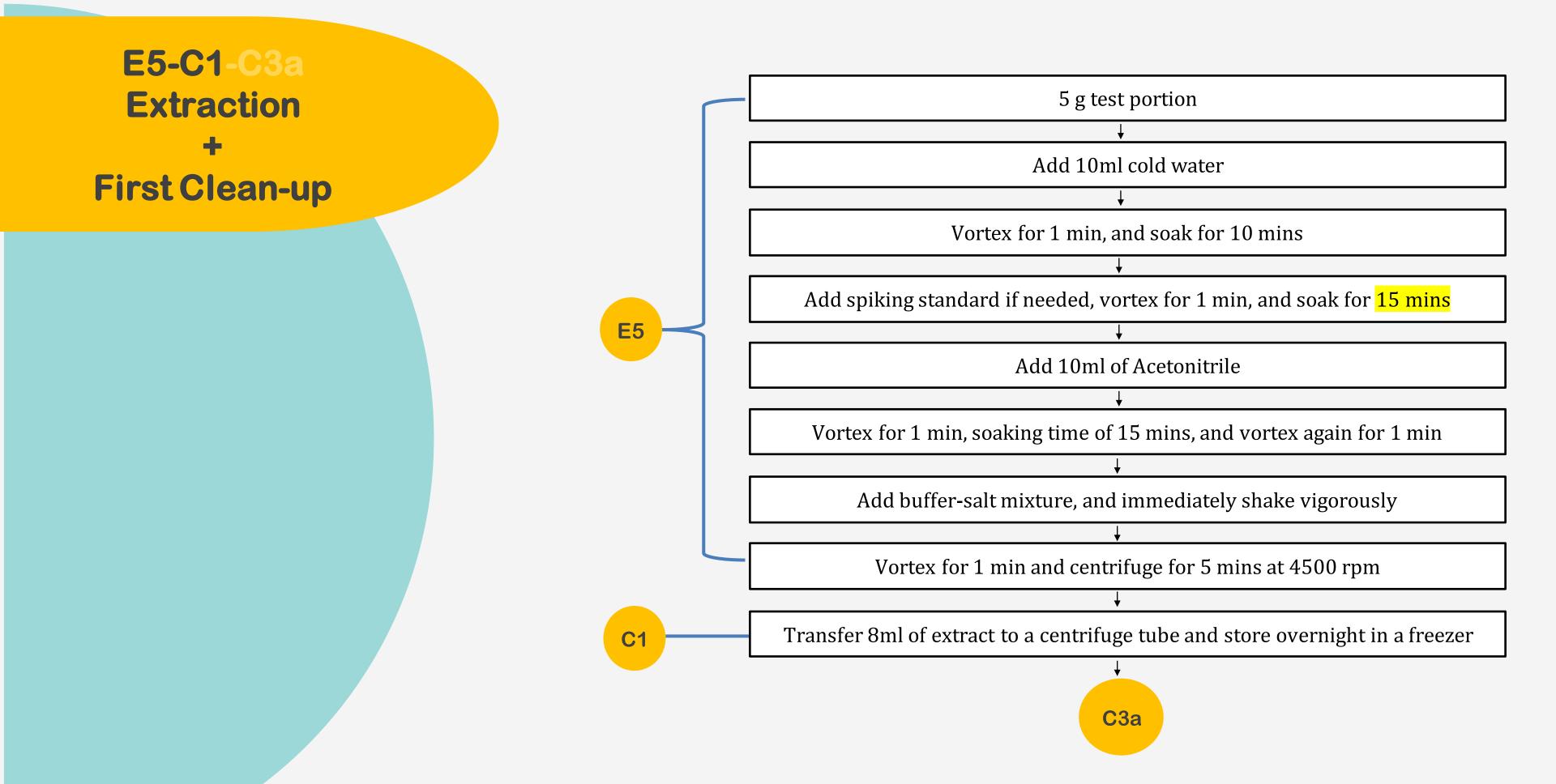

Rice analysis using Modular QuEChERS
 method for LC

Analysis

Rice analysis using laboratory developed method for GC

Data processing

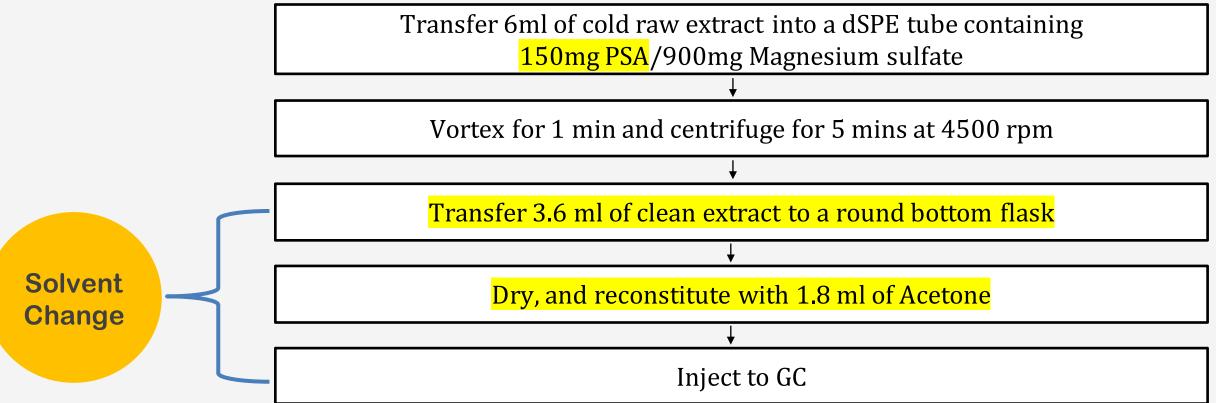
Retrieve and computation of results


ASEAN JICA Food Value Chain Development Project

Modular QUECHERS E5-C1-C3a

Chemicals Reagents SPE Apparatus

- QuEChERS Extraction Kit, EN 15662 Method
- QuEChERS Dispersive Kit, General Fruits and Vegetables, 15 mL EN
- Acetonitrile, HPLC Grade •
- Acetonitrile, LC-MS Grade
- Acetone, Pesticide Grade
- Water, LC-MS Grade \bullet
- **Distilled Water**


- Grinder
- Top loading balance
- Vortex Mixer
- Centrifuge •
- **Rotary Evaporator** •
- **Pipettor** •
- Fumehood •
- GC-MS

GC INJECTION Control: 1 Recovery: 3

FOR LC Injection, omit solvent change to Acetone

> **LC INJECTION Control: 1 Recovery: 3**

Modified QuEChERS

(Laboratory developed method)

Chemicals Reagents SPE Apparatus

- QuEChERS Extraction Kit, EN 15662 Method
- 500 mg GC-e/500 mg PSA SPE •
- Acetonitrile, HPLC Grade
- Acetone, Pesticide Grade \bullet
- Water, LC-MS Grade •
- Toluene, AR Grade
- **Distilled Water** •

- Grinder
- Top loading balance
- Vortex Mixer
- Centrifuge •
- **Rotary Evaporator** •
- **Pipettor** •
- Fumehood
- GC-MS

Modified QuEChERS (Laboratory developed method)		Vc
GC INJECTION Control: 1	Extraction	Add spiking standa
Recovery: 3		Vortex for 1 min,
SPE Conditioning 500 mg GC-e/500 mg PSA		Add buffer-s
10ml 3:1 Acetonitrile : Toluene		Vortex for
	Clean-up	Elute 5 ml of
		Re-elute S
		Dry,

10 g test portion
\downarrow
Add 10ml cold water
↓
ortex for 1 min, and soak for 10 mins
\checkmark
lard if needed, vortex for 1 min, and soak for 10 mins
↓
Add 10ml of Acetonitrile
↓
soaking time of 15 mins, and vortex again for 1 min
\downarrow
salt mixture, and immediately shake vigorously
\downarrow
1 min and centrifuge for 5 mins at 4500 rpm
\downarrow
extract into 500 mg GC-e/500 mg PSA SPE tube
\checkmark
SPE with 20 ml of 3:1 Acetonitrile : Toluene
\downarrow
, and reconstitute with 5 ml of Acetone
$\mathbf{\downarrow}$
Inject to GC
ASEAN JICA Food Value Chain Development Project 7